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Abstract. In most industries, the working conditions of equipment vary sig-
nificantly from one site to another, from one time of a year to another, and so
on. This variation poses a severe challenge for data-driven fault identification
methods: it introduces a change in the data distribution. This contradicts
the underlying assumption of most machine learning methods, namely that
training and test samples follow the same distribution. Domain Adaptation
(DA) methods aim to address this problem by minimizing the distribution
distance between training (source) and test (target) samples.
However, in the area of predictive maintenance, this idea is complicated by the
fact that different classes – fault categories – also vary across domains. Most
of the state-of-the-art DA methods assume that the data in the target domain
is complete, i.e., that we have access to examples from all the possible classes
or faulty categories during adaptation. In reality, this is often very difficult to
guarantee.
Therefore, there is a need for a domain adaptation method that is able to align
the source and target domains even in cases of having access to an incomplete set
of test data. This paper presents our work in progress as we propose an approach
for such a setting based on maintaining the geometry information of source
samples during the adaptation. This way, the model can capture the relationships
between different fault categories and preserve them in the constructed domain-
invariant feature space, even in situations where some classes are entirely
missing. This paper examines this idea using artificial data sets to demonstrate
the effectiveness of geometry-preserving transformation. We have also started
investigations on real-world predictive maintenance datasets, such as CWRU.
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·Geometry

1 Introduction

In recent years, data-driven fault identification methods have attracted increasing
research attention for different applications, including rotating machinery, gearbox, wind
turbines, and more [8]. These methods are generally based on machine learning and learn
predictive models from provided training samples. Those models are used to classify
new, previously unseen data. However, the generalization ability of the models to predict
the label of the test samples is inherently connected to the assumption that training
and test samples are generated by independent and identically distributed random
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variables. In a predictive maintenance setting, this corresponds to equipment operating
under the same conditions and consequently generating data of the same distribution.

However, in a real industrial setting, the variation in working conditions is inevitable.
The most common setup is that fault identification methods are created by the equipment
manufacturer in their lab setting and then deployed at customer installation, often in a dif-
ferent part of the world. This means that the data from these two situations will inherently
differ. We call each of these settings and the corresponding data distributions, “domains.”

In this paper, we assume that the training samples belong to one domain, called
source, and test samples belong to another domain, called target. The goal is to identify
a method where the model trained based on data collected by the manufacturer can
be applied to the data collected by the customer. In the following text, we will, for
simplicity, use “source samples” (resp. target samples) to refer to samples generated
in the source (resp. target) domain.

To tackle the problem of working with the training data and test data generated from
different domains (different working conditions), several cross-domain fault identification
methods are reported in the literature [7]. In this work, we will focus on Domain
Adaptation (DA), where the goal of is to minimize the distribution distance between
the source and target domains. It is one of the methods used to solve cross-domain
fault identification tasks.

Two DA settings are applied to fault identification: Full Domain Adaptation (FDA)
and Limited Domain Adaptation (LDA). FDA assumes that unlabeled samples exist for
all fault categories (classes) in both the source and the target domains. In practice, this
means that in order to identify faults in the target domain, FDA techniques must wait
until the occurrence of all of the faults in the customer installation; only then can they
collect enough samples to perform domain adaptation. In contrast, LDA techniques can
adapt corresponding source and target samples even if there are no (unlabeled) samples
for some fault categories. As an extreme example, the ultimate goal is to be able to
perform DA based on healthy target samples only; before any faults are recorded at the
customer installation and when the faulty samples come only from the lab experiments.

The main idea of this work is to adapt source and target domains while preserving
the geometry of the data; Keeping the data’s geometry helps transfer knowledge about
missing classes to the target domain. This promises to capture the transformation
between source and target domains without requiring the complete correspondence
between all the classes or fault categories. To this end, a new loss function is proposed
to adapt the source and target domains while preserving the distance between different
samples and consequently preserving the distance between fault categories. The results
of the proposed idea on artificial data sets show the effectiveness of preserving the initial
geometry and the adaptation of corresponding faults in the source and target domains.

2 Related Works

DA techniques have been applied successfully in several applications, including predictive
maintenance and specifically for fault identification [7]. The core idea of DA is to
minimize the distance between the data distribution in source and target domains.
They do the minimization either explicitly using distribution distance measurements
such as MMD [2], or implicitly using adversarial training methods [4]. Most papers
presented in the literature solve the FDA problem. Regarding the LDA setting, Liu ZH,
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et. al in [3] proposed a method for the LDA setting. They assume that in the target
domain, only healthy samples are available. Their method learns functions that map
the healthy category to each faulty category in the source domain. Those functions are
then applied to healthy samples in the target domain to generate fake faulty samples.
Finally, a cross-domain classifier is trained using real source samples and fake target
samples. The proposed method in [6] solves the problem in the LDA setting with any
number of missing fault categories in the target domain. They adapt the target sample
toward source samples while preserving the relationship between source samples to
prevent them from distortion. However, the model is not trained for missing categories;
thus, they will be placed randomly in the constructed domain-invariant feature space.

3 Problem Formulation

The proposed method is designed with the following assumptions in mind:
– Training and test samples are generated from two domains corresponding to different

working conditions. In particular, there is only one source domain and one target
domain.

– The (potential) fault categories are the same for source and target domains.
– Samples from the source domain are labeled and correspond to all the possible fault

categories.
– Samples from the target domain are unlabeled.

More formally, the above assumptions can be stated as follows. Considering source
domain as Ds = {(xs,ys)} and target domain as Dt = {(xt,yt)}, the label space of
source and target domain are equal to each other, i.e. Ct=Cs.

The label space of the available target samples during adaptation is C′
t ⊆Ct. If

C′
t =Ct =Cs, the problem is a full domain adaptation(FDA); and if C′

t ⊂Ct, the
problem is limited domain adaptation(LDA).

The need for maintaining the relationships within fault categories in the source
domain is particularly important for the LDA setting. If we were to simply map Cs
into our available C′

t categories, the “surplus” source samples from Cs \C′
t cannot

be matched to any available samples from the target domain. Since they lose their
relationship with other samples, they are very likely to cause a negative impact on
adaptation [?]. Therefore, to utilize them and extract information in the target domain,
a geometry preserver keeps the relationship between samples in the new representation
and original representation space consistent. Consequently, the source samples from C′

t

categories will be adapted to target samples from C′
t as much as possible, while source

samples from Cs\C′
t categories will be mapped into areas of space that are not occupied

by any D′
t samples – based on maintaining their relationships to other Cs classes.

More specifically, the overall goal is to utilize geometry information during DA,
to solve the problem of LDA. However, we first show the effectiveness of preserving
geometry in the FDA setting. Notably, for the FDA setting, we construct a shared
feature representation for both source and target domains in which they are aligned.

4 Proposed Method

In this section, we describe how to employ a new method to maintain the geometric
information of the samples while adapting the source and target samples in the FDA
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Fig. 1: Proposed method

settings. To this end, source and target samples are mapped to a new domain-invariant
feature representation. In the new feature representation, the source and target samples
are indistinguishable, and all pairwise distances are maintained. This idea is implemented
using a neural network, illustrated in figure 1.

At first, we generate all pairwise samples in each of the source and target domains,
e.g., (xi,xj) along with two labels; The first label is the distance between xi and xj.
The second label is the domain to which xi belongs. Similarly, the network has two
inputs and two outputs; So, it takes pairwise samples (xi,xj) as input and predicts the
distance of the inputs in the new feature space and the domain to which xi belongs.

There is a component as feature extractor, Gf ; The output of the feature extractor is
the new feature space. There are two copies of Gf in the network with completely the
same parameters. Each of the inputs feeds into one of them. So, they will be generated
in the new feature space. We call them Xi and Xj. Xi and Xj feed into a Distance
Layer(DL) that calculates the distance between Xi and Xj.

We want to train the feature extractor so that the distance between xi and xj is
equal to the distance between Xi and Xj. So, the output of the Distance Layer for
the pairwise inputs (xi,xj), which we call D, must be equal to the first provided label
of (xi,xj). We call this part of the network as Geometry Preserver, Gg. The geometry
preserver is shown in gray color in figure 1.

On the other hand, the output of the first feature extractor is fed into a component
called Domain Regressor, Gd. The domain regressor predicts the domain of the first
input, xi, which is shown by d. The responsibility of Gd is to align the source and
target domains. So, it is trained in such a way that it can’t distinguish source and
target samples. In continue, we will discuss the details of the proposed method.

Feature extractor and domain regressor follow the same notation as [1]. Feature
extractor Gf(.,θf) learns a function (parameterized by θf) that maps input samples
to the new feature spaces. Geometry preserver Gg(.,.,θf) controls the output of Gf
by adding a loss function. The purpose of the geometry preserver is to preserve the
relationship between pair samples after mapping them to the new feature space. To
this end, we adopt a Siamese-like neural network configuration to implement Gg [5].
A Siamese-like network contains two identical subnetworks with shared parameters.



Towards Geometry-Preserving Domain Adaptation for Fault Identification 5

So, we have configured the Gg using two copies of the feature extractor followed by
a Distance Layer (DL). DL calculates the distance between the outputs of two Gf .

To give an example, let us assume that x1 and x2 are two samples belonging
to the same domain, either source or target. Then Gf(x1) = X1 and Gf(x2) =
X2 are the same samples, but transformed into the new feature space. Moreover,
Gg(x

1,x2;θf) = disnew(x1,x2) is the the distance of Gf(x1) and Gf(x2), and the
parameters θf are optimized to make sure that this distance is as close as possible to
disoriginal(x

1,x2)=‖x1,x2‖ (the distance between these samples in the original space).
Accordingly, given ns source samples and nt target samples, training Gg for both

source and target samples lead to the following optimization problem:

min
θf

[
1

n2s+n2t
(

ns∑
i=1

ns∑
j=1

l(i,j)g (θf)+

nt∑
i=1

nt∑
j=1

l(i,j)g (θf))+λR(θf)], (1)

where lg is the loss function of the geometry preserver and R(θf) is a regularizer
weighted with the λ. In order to adapt source and target domains, we use a domain
regularizer that is proposed by [1], as R(θf). Similar to [1], we call domain regularizer
as Gd with parameters θd that is a domain regressor layer. Gd(.,θd) learns a logistic
regressor that model the probability that xi is from the source or target domain.
However, we only adapt the samples from shared classes; therefore, we define an array
I so that Ii=1 if xi is a target sample or it is a source sample belonging to the shared
classes, otherwise Ii=0.

Considering the loss function ofGd as ld, the regularizer will be calculated as follow [1]:

R(θf)=max
θf ,θd

[
−1

ns+nt
(

ns+nt∑
i=1

Iil
i
d(θf ,θd))]. (2)

So, using equations 1 and 2, the complete optimization objective will be:

E(θd,θf)= [
1

n2s+n2t
(

ns∑
i=1

ns∑
j=1

l(i,j)g (θf)+

nt∑
i=1

nt∑
j=1

l(i,j)g (θf))−λ(
1

ns+nt
(

ns+nt∑
i=1

lid(θf ,θd)))].

(3)
A gradient reversal layer(GRL)[1] is used between the feature extractor and the

domain regressor. GRL act as an identity function in forward propagation. But during
back-propagation, it changed the sign of the gradient. So, the following gradient updates,
to find the saddle point θf and θd can be done using stochastic gradient descent (SGD).

θf←θf−µ(
∂l

(i,j)
g

∂θf
−
∂l

(i)
d

∂θf
), θd←θd−µ(

∂l
(i)
d

∂θd
) (4)

where µ is the learning rate. As a result, the trained feature extractor maps both source
and target samples into a new feature representation in which different domains are not
distinguishable while the geometry of data within each domain is preserved. In the
constructed feature space, the labeled source samples can be used as training samples
to learn a predictive model to predict the label of unlabeled target samples.

5 Experiments

As this paper is a work-in-progress, we only demonstrate the efficiency of our proposed
method using synthetic data. We first conduct a set of experiments in FDA setting
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and then in the LDA setting. For all experiments, the following configurations are fixed;
We describe each layer in the neural network as (size of neurons, activation function);
the feature extractor consists of 3 dense layers as (15, relu),(15, relu), (2, linear); the
new feature space is constructed in the last layer of the feature extractor. We have
deliberately chosen the size of the last layer of the feature extractor equal to two in
order to compare the original and constructed feature spaces visually and intuitively.
Domain regressor is shaped with two dense layers as (15, relu), (1, sigmoid). In both
subnetworks, Batch Normalization is used. The loss functions of geometry preserver and
domain regressor are mean square error(MSE) and binary-cross-entropy, respectively.
Euclidean distance is used to calculate disnew and disoriginal (the pairwise distances
of the samples in the original and new feature spaces, respectively).

5.1 FDA setting

In this section, we study the behavior of the proposed idea in an FDA setting.

Fig. 2: Two toy data sets are presented in the first column. The markers ◦ and ×
denote the samples from source and target, respectively. Different colors show different
categories. The results of domain adaptation are shown in the second column.

Figure 2 shows the results comparing the source and target samples in their original
(on the left) and new or constructed (on the right) feature spaces. The two rows of
Figure 2 correspond to two different artificial data sets. For the first problem, on the
top, the transformation to generate target samples is a shift (translation) of all the
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source samples by 0.2 to the left. In the second one, all source samples are rotated 30
degrees with respect to point (0.5,0.5).

It can be seen that in both cases, the source and target samples in the new feature
space are not only adapted to each other but also their geometry is preserved. As a
consequence, the method keeps the relationship between different categories. This is
a clear advantage of our proposed method over existing state-of-the-art approaches.
Methods that only aim for adaptation generally distort the within-domain relationships.
Accordingly, this approach provides a promising result; in the next subsection, we
extend this functionality for an adaptation in an LDA setting.

In Figure 3, we present the training loss per epoch for the first problem example.
GP-loss, DR-loss and loss are the loss of geometry preserver, domain regressor and total
loss of the network, respectively. It can be seen that the loss amount gets steady around
0.6; that means the saddle points to optimize the objective function are obtained.

Fig. 3: Training loss of geometry (GP-
loss), domain regressor (DR-loss) and the
whole network (loss).

Fig. 4: Accuracy of the target label set
prediction using 1-NN classifier.

In the next experiment, we evaluate how well the DA approach supports fault
identification tasks. To this end, we use source and target samples in the new space as
training and test samples. We use a K-nearest-neighbor classifier with k=1 to predict
the label of target samples. Thus, in each iteration of training the model, we construct
a 1-NN classifier and predict the target labels. The obtained accuracy per iteration
is shown in figure 4 as Our method. In order to show the training procedure, in each
iteration, 10% of all samples are used (since when using all of the data in an epoch, the
training converges already in the first iteration). In addition, in order to show the effect
of the geometry preserver, we compare the result of our method against a neural network
that only adapts source and target with an adversarial method; i.e., we omit the effect of
the geometry preserver from the network; the corresponding results are shown in figure
4 as Only adaptation. It can also be seen that by using the geometry preserver, the
network will converge faster than the alternative. Besides, we use the source and target
samples in their original space as training and test samples and predict the label set of
target samples using a 1-NN classifier; The results are also shown in figure 4 as Without
change (It is the results in the original space, i.e., without adaptation.). By comparing
the results, the effectiveness of the proposed method to adapt domains is self-evident.
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Table 1: Classification results on 4 adaptation problem.

Rotation degree Our method Only adaptation Without change

15 1.0+0.0 0.865+0.0541 1.0 +0.0
30 0.997+0.0064 0.804+0.0709 0.91+0.0
45 0.875+0.1891 0.692+0.0957 0.55+0.0
60 0.875+0.0532 0.563+0.1391 0.39+0.0

Finally, we perform a similar analysis as above in a more complex dataset, by creating
four versions of the 2D moon data set by rotating it by 15, 30, 45, and 60 degrees. A case of
the source and target samples with a rotation degree equal to 30 can be seen in the left bot-
tom of figure 2. For each of these problems, a 1-NN classifier in the constructed new fea-
ture space is used to predict the label set of the target samples. We repeat this experiment
for our method, only adaptation (omitting the effect of geometry preserver) and without
adaptation (applying 1-NN classifier in the original space). The results, in terms of the
mean and standard deviation, calculated after the 10 times run, are shown in table 1.

5.2 LDA setting

We examine two cases of LDA: one-missing and two-missing target classes during the
training. The first row of the Figure 5 demonstrates a one-missing class scenario. Figure
5a indicates that we do not have access to the training samples for class 3 (red samples).
Nevertheless, in the constructed space shown in Figure 5b, we can observe that the
test samples of class 3 are aligned with their counterparts from the source domain.
In other words, our method compensates for the absence of samples of class 3 in the
target domain by preserving the geometry information while adapting domains.

Likewise, Figure 5c shows the 2-missing scenario where we do not have access to any
samples of classes 2 and 3. The results shown in Figure 5d shows that the proposed
method is capable of achieving the right adaptation, not only for the available classes,
but also for the missing ones.
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(a) Training samples in the original space for
1-missing scenario

(b) Test samples in the constructed space for
1-missing scenario

(c) Training samples in the original space for
2-missing scenario

(d) Test samples in the constructed space for
2-missing scenario

Fig. 5: Two LDA scenarios, with 1-class-missing scenario in top row and 2-class-missing
in the second row.

6 Conclusion

In this paper, we propose a new method for limited domain adaptation, leveraging
geometry information of both the source and target domains. We present, as a work-
in-progress one, results in the FDA setting confirming that the relationships between
samples are preserved in the new feature space. After that, we provide the results
for LDA settings on toy datasets. According to the results, maintaining geometry
information within domains allows for the use of source samples to compensate for the
missing classes in the target domain. As the next step, we plan to use this method to
solve real-world problems, in particular identifying faults in an industrial system. In other
words, by utilizing this method, there is no need to wait for all types of faults to occur in
a system before developing a predictive model, but rather use data from other systems.
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adaptation model for bearing fault diagnosis. IEEE transactions on systems, man, and
cybernetics: Systems 51(7), 4217–4226 (2019)

5. Pai, G., Talmon, R., Bronstein, A., Kimmel, R.: Dimal: Deep isometric manifold learning
using sparse geodesic sampling. In: 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV). pp. 819–828. IEEE (2019)

6. Wang, Q., Michau, G., Fink, O.: Missing-class-robust domain adaptation by unilateral
alignment. IEEE Transactions on Industrial Electronics 68(1), 663–671 (2020)

7. Yan, R., Shen, F., Sun, C., Chen, X.: Knowledge transfer for rotary machine fault diagnosis.
IEEE Sensors Journal 20(15), 8374–8393 (2019)

8. Zhang, W., Yang, D., Wang, H.: Data-driven methods for predictive maintenance of
industrial equipment: A survey. IEEE Systems Journal 13(3), 2213–2227 (2019)




