

Bachelor Thesis

Computer Science and Engineering, 300
credits

Development of a reliable and time-
efficient digital production process of
encrypted intelligent keys
Embedded systems and software development

Bachelor Thesis in Computer Science and Engineering, 15 credits
Halmstad 2022-05-11
Fredrik Almario Strömblad, Primus Svensson

Acknowledgments
We want to thank our supervisor Dr. Mahdi Fazeli for his support and academic guid-
ance. We would also like to thank Swedlock AB for allowing us to work on this project;
a special thanks to Martin Lindvall at Swedlock AB for his openness and support dur-
ing our time there.

i

Abstract
Smart keys are increasing in popularity due to the many benefits they bring. Access
control and overview have never been more efficient than it is today. This thesis project
automates the digital production of a new line of keys. Automating this production pro-
cess improves the production in scalability, reliability, and efficiency. This report in-
cludes background research on critical components, methodologies to solve presented
subproblems, the results of this project, and a discussion providing insight into the
possible benefits of using an automated development line. This automation’s core ele-
ments are an integrated circuit holding a microcontroller, hardware components, and a
Graphical User Interface. This project results in an automated production process capa-
ble of producing smart keys more efficiently than today. A report containing the most
common errors using this production process and suggestions to improve scalability,
reliability, and efficiency further.

Sammanfattning
De många fördelar smarta nycklar bidrar med gör att de snabbt ökar i popularitet.
Åtkomst och översikt över tillgång har aldrig varit så effektivt som det är idag. Den
här avhandlingen försöker automatisera den digitala produktionen av en ny serie elek-
troniska nycklar. Genom att automatisera den här processen kommer produktionens
skalbarhet, pålitlighet och effektivitet att öka. Den här rapporten innehåller bakgrund-
sundersökningar gällande kritiska områden för utvecklingen, metoder för att lösa prob-
lemställningar, projektets resultat samt en diskussion gällande möjliga fördelar av pro-
duktionsautomatisering. Grundelementen av den här automatiseringen är ett kretskort
med en mikrokontroll, hårdvarukomponenter samt ett grafiskt användargränssnitt. Pro-
jektet resulterar i en produktionsprocess kapabel att producera elektroniska nycklar
effektivare än tidigare möjligt samt en rapport innehållande de mest förekommande
produktionsfelen relaterade till den automatiserade processen. Rapporten innehåller
även förslag på förbättringar för att ytterligare öka skalbarhet, pålitlighet och effek-
tivitet.

ii

Contents
Acknowledgments i

Abstract ii

Sammanfattning ii

Acronyms v

1 Introduction 1
1.1 Swedlock Pro . 2
1.2 Installation Cycle . 2
1.3 Purpose . 4
1.4 Problem Statement . 4

1.4.1 The Hardware Platform . 4
1.4.2 Routines and Functions . 5
1.4.3 Two-way Communication 5
1.4.4 Software Design . 5
1.4.5 Compiling Test Data . 6

1.5 Restrictions . 6
1.6 Requirements Specification . 6

2 Background 7
2.1 Embedded Systems Platforms . 7
2.2 Software Development Methodologies 7
2.3 Digital Communication . 8

2.3.1 Parallel/Serial Communication 8
2.3.2 Error detection . 9
2.3.3 Master/Slave Model . 11
2.3.4 Duplex . 12

2.4 Similar projects . 13

3 The Development System Setup 15
3.1 Materials Used . 15

3.1.1 The Hardware Platform . 15
3.1.2 The Software Platform . 15
3.1.3 Other Materials . 16

3.2 The Development . 16
3.2.1 Hardware Component Investigation 16
3.2.2 Microcontroller Control Functions 16
3.2.3 Two-way Communication 17
3.2.4 The Designed Software . 18
3.2.5 Production Test Compilation 19

3.3 The Test and Verification of the Solution 19

iii

4 Results Achieved 21
4.1 Hardware Verification . 21
4.2 Control Functions . 24
4.3 GUI . 27
4.4 Production Settings . 28
4.5 Installation Cycle . 30
4.6 Production Tests . 32
4.7 Results . 34

5 The Efficiency of the Solution 35
5.1 Comparison with existing Solutions 35
5.2 Scalability . 36
5.3 Reliability . 38
5.4 Efficiency . 38
5.5 Societal Aspects . 39

6 Conclusions 41

References 42

iv

Acronyms

RFID Radio-frequency identification

CAGR Compound Annual Growth Rate

TTM Time To Market

GUI Graphical User Interface

COM Communication Port

PIC Peripheral Interface Controller

RGB Red Green Blue

SDM Software Development Methodology

FPGA Field-Programmable Gate Array

DSP Digital Signal Processor

ASIC Application-Specific Integrated Circuit

IDE Integrated Development Environment

ADC Analog-to-Digital Converter

ESD Electrostatic Discharge

LED Light-Emitting Diode

I/O Input/Output

CRC Cyclic Redundancy Check

MUX Multiplexer

CPU Central Processing Unit

IC Integrated Circuit

LSB Least Significant Bit

MSB Most Significant Bit

FCS Frame Check Sequence

v

1 Introduction
Smart locks and keys are a natural technological advancement in this day and age. The
use of smart locks in various forms and industries is easily spotted, and the technology
is constantly improving, offering more innovative solutions to homeowners and busi-
nesses. Examples of early adaptations are Radio-frequency identification (RFID) hotel
key cards, public transport cards, and campuses with access cards. Hotels, schools, and
transport services need to give clients specific access permissions; guests need access
to their rooms, students need access to certain facilities, and travelers need access to
different regional transport services. Having the opportunity to modify the access of a
given key card quickly offers businesses and clients a lot more flexibility and comfort.
This example of access control applies to operations where individuals need different
access, and these access needs might be subject to change ever so often. Changing elec-
tronic rights through a database or sync station is easier, faster, and more cost-efficient
than calling a locksmith and ordering a new key. Besides the efficiency and flexibility
these new smart lock solutions offer, they provide a new security aspect. Since these
systems are electronic, they often track every action with timestamps and IDs. These
logs give administrators an overview of specific property activities and help prevent
unwanted traffic. The challenges of intelligent keys come with their design. The size
restriction leads to problems such as what components can be used and limits the power
source to small batteries. The keys must be long-lasting, user-friendly, and straightfor-
ward to use, as it has a vast usage audience. The key needs to have the same functions
as a regular key with innovative electronic features. These factors play a massive role
in the design of these keys.

The industry of smart door locks and keys has a considerable market size. By 2019
the global market size was estimated to be almost 1.2 billion dollars and is projected
to reach 4.4 billion by 2027, exhibiting a Compound Annual Growth Rate (CAGR) of
18.4% (1). The growing interest and demand for these locks put heavy pressure on the
manufacturers, where the biggest concern is security (2). With a rapidly growing mar-
ket comes a more significant pressure on manufacturers. In order to meet the demands
of the market, the manufacturers need to have their line of production automated, re-
ducing their Time To Market (TTM). This bachelor thesis cooperates with Swedlock
AB (3) in Halmstad and focuses on their new line of products, Swedlock Pro (4), which
is a series of intelligent locks and keys. The purpose of Swedlock Pro is to ease the
handling of keys for operations such as companies and municipalities that face access
and key administration challenges. Today, several actors on the market provide smart
locks and keys, such as Yale (5) and ID Lock (6), but they are focusing on the homes
of private individuals. The main concern for these products is security which consists
of access control and encryption. This bachelor thesis is a part of automating these
products’ digital production.

1

1.1 Swedlock Pro
Swedlock Pro consists of several products, both door locks and keys. The locks consist
of padlocks, medicine cabinets, and lock cylinders which are easy to install into most
lock housings. The main difference between the products of Swedlock and other actors
on the market is the technique that powers the locks. Most smart locks require a power
supply to function (7), while Swedlock uses induction to power the locks when needed.
Induction results in more efficient power consumption as it only requires power during
usage. Each key and user gain access through a pre-programmed sync station with
individual users’ rights controlled by an operations administrator.

1.2 Installation Cycle
The installation process consists of nine main components (see Figure 1):

• An Operator which is responsible for the installation process.

• A Key which is the target of the installation process.

• A Graphical User Interface (GUI) for operators to use when managing key
production.

• A Peripheral Interface Controller (PIC) Programmer which installs software
into the key.

• A Microcontroller which sets the pins of the circuit board for each individual
key and cycle.

• A Shift Register to forward data from the microcontroller.

• An Analog Switch to forward data from the microcontroller to either the current
monitor or the Multiplexer (MUX).

• A Current Monitor to measure the current flowing through the keys after in-
stallation.

• An Optical Sensor to verify the Light-Emitting Diode (LED)s color pattern.

• A MUX to forward data from either the optical sensor or the current monitor to
the analog to digital converter.

• An Analog-to-Digital Converter (ADC) to convert analog signals to digital
ones.

2

Figure 1: Behavioral model of the production process. This digital production process
starts with an operator setting up the production settings through the GUI. These set-
tings ensures that the correct key gets updated with the correct information. Once the
system is ready for production, the microcontroller sends signals setting the relevant
components through the shift registers. The installation process then starts by upload-
ing unique data into the specific key using the PIC Programmer. Once this is complete,
the testing phase begins. The microcontroller iterates to the next phase by setting the
components needed for testing. During the testing phase, the microcontroller measures
current outputs from keys. The testing phase ends, and the microcontroller reports the
results to the GUI through Serial/COM. If more than one key is present, this process
repeats for the number of keys involved in the installation cycle. If not, the operator
removes the key from the fixture and inserts a new one.

3

1.3 Purpose
This Bachelor Thesis develops an automated digital production process that integrates
into the production of Swedlocks’ new line of products. This automation accelerates
the production process, enabling production of larger quantities. The production pro-
cess improves reliability, where human error is inevitable and suffers from fatigue,
disturbances, and precision loss, whereas a computer system does not. This production
process allows for greater scalability as the company grows. Currently, the company
does not have any automated processes for the digital production of these keys. Today
the programming is performed manually, and this is not efficient, reliable, or scalable
enough to be used in mass production, which is where automation comes in. A fixture
holds the keys in place, allowing automatic alignment of installation pins and receivers,
and the microcontroller automatically takes care of key programming and testing. The
scalability of the process presents opportunities for the fixture to hold several keys at a
time, further increasing the automation by larger installation cycles. Larger installation
cycles lead to extended periods of automated production, freeing time for operators.
Although manual production is not efficient enough, it is a vital part of the company’s
production since it is currently the only source of digital production. The automation
of this process is the primary purpose of this project, developing an efficient digital
production process with high product quality.

1.4 Problem Statement
It is essential to define and segment the problem statement to reach the goals and objec-
tives set for this project. The following subsections list sub-problems in chronological
order to ease the development process and help prioritize which parts require attention
at any given time. The objectives set for this project are the following.

• Develop a digital production process capable of producing a key in less than 30
seconds.

• Identify the most common errors in the digital production of electronic encrypted
keys and the cause of these errors.

• Perform tests to ensure high product quality.

1.4.1 The Hardware Platform

Since Swedlock AB designed the integrated circuit for the embedded system, under-
standing the circuit and its components is the first problem, which means studying the
circuit diagram, its components and their datasheets, and its functionalities. This re-
search explains the circuits’ and individual components’ shortcomings and limitations.
Understanding the properties of the underlying hardware is vital to the development
process since it is the foundation creating this digital production process.

4

1.4.2 Routines and Functions

The underlying hardware consists of 33 components responsible for different opera-
tions during production. The development of routines and functions to control these
components is essential. The system requires individual components to be active at
different times, all controlled by the microcontroller. Meaning that having well-tested
functions and routines to activate/deactivate various circuit pins at any given time is
paramount. Functions must come with standardized tests that state how to verify the
functionality of the functions. Section 3.2.2 Microcontroller Control Functions on
page 16 contains a detailed presentation regarding this. Furthermore, version control is
vital to ensure that functions behave accordingly during and after updates. The succes-
sive progress of this project is documented together with time and date.

1.4.3 Two-way Communication

Another challenge is to establish communication between the circuit and the GUI used
by operators. Information flows in both directions, meaning that communication meth-
ods and protocols are required to ensure that the information sent is received as in-
tended. The only information available to the operator is the data transmitted back
to the GUI. This data consists of test results, instructions, and the installation cycle
progress. If this data is corrupt, if any bits are erased or inverted during transmission,
the operator gets fed false information, which has severe consequences for product
quality since faulty keys are produced and sent to customers.

1.4.4 Software Design

The next issue is creating the designs for the embedded program and the operators’
software. Before implementing all code, each program’s functionalities, features, and
properties must be clear. Each part of every program must have a purpose since this
helps sort what is vital for functionality. These programs interact at several points dur-
ing the production process, emphasizing the importance of planned software. Another
aspect is memory limitations since this is an embedded system with a microcontroller.
Having these designs and their interactions visually represented before starting the im-
plementation helps the development stay efficient. Knowing which components inter-
act with each other and where the issues occur helps prioritizing what parts require
more focus.

Once the designs and outlines of these programs are complete, the implementations
start. Each new component is tested individually and with integrated tests to ensure that
different modules work together as intended. At this stage, the mentioned functions and
routines are helpful. Since the development of underlying methods to control differ-
ent components is complete, this part’s difficulties are making them interact together
and function as one. These programs requires tinkering because tests require specific
timing. An example of this is the timing of the Red Green Blue (RGB) lights.

5

1.4.5 Compiling Test Data

This section refers to the later objectives—a report detailing the most common errors
with the digital production of keys. Since the production process is new, errors are plau-
sible. Conducting extensive testing on multiple keys’ to ensure high product quality is
essential. These tests are the basis for the errors report. This report provides grounds
for improvements and stop nonfunctional keys from passing through production. This
report is significant in future production as; it provides data regarding possible flaws
and the occurring rate. The report helps decide future tests and frequencies to improve
production times and quality. The biggest issue in compiling this report is producing
and testing keys to collect sufficient data for this report, as it requires extensive test
pools.

1.5 Restrictions
Discoveries in the hardware research show that the circuit provided by Swedlock is
faulty. More precisely, an input of an analog switch responsible for the current test
is inverted. The inverted input makes it impossible to perform current measurements
and optical sensing the intended way. The provided circuit is incomplete as it does not
have the Optical-sensor (8) integrated, which prohibits one way of performing one of
the requirements: verifying LED pattern functionality. Another restricting discovery
is a resistor in the circuit that disables one of the options of booting the software with
the push of a physical button. Finally, the limitations of the microcontroller prevent
parallel production and testing since the microcontroller only has one analog input pin.
Only having one analog pin requires a serial production approach to produce multiple
keys. A final restriction is the time available to perform extensive production tests and
compile test data, as these require a complete production process. Finally, a request
from the company restricts the choice of programming languages for developing the
GUI to C#.

1.6 Requirements Specification
Below are requirements for the automated production process:

• Time-efficient production process.

• Measure the current outputs from the keys.

• Verify LED pattern functionality.

• Identify the most common errors.

• Identify the cause of these errors.

• Develop a user-friendly GUI.

• Establish a communication protocol between GUI and Microcontroller.

6

2 Background
The following section contains research on different types of embedded system plat-
forms, Software Development Methodology (SDM)s, digital communication, and projects
with similar subsystems.

2.1 Embedded Systems Platforms
This section contains information regarding different embedded systems platforms and
their possibilities and limitations. These platforms have different attributes and must
be carefully selected to fit the specific task.

There are several different embedded system platforms, such as:

• Microcontrollers typically consist of a processor, memory, and input/output pe-
ripherals; all collected on one chip (9). They are mainly designed to do a few
tasks in an embedded system. Solving bugs when using a microcontroller be-
comes relatively easy since it only requires a software update.

• A microprocessor is an electronic device that contains the arithmetic, logic,
and control circuitry required to perform the functions of a computers Central
Processing Unit (CPU) (10). It is a programmable, multipurpose device that
incorporates the functions of a CPU on a single Integrated Circuit (IC) (11).

• Field-Programmable Gate Array (FPGA)s are built with several intercon-
nected blocks that form logical gates. FPGAs’ can be customized after man-
ufacture to perform specific computations (12). Creating an update using an
FPGA requires hardware updates which are more costly and less flexible than a
software update.

• Digital Signal Processor (DSP)s take digitalized signals from the real world,
such as audio, temperature, or positions, and mathematically manipulate them.
They perform simple mathematical functions fast (13).

• Application-Specific Integrated Circuit (ASIC)s are circuits designed for a
specific purpose. ASIC can contain almost all electronic components needed on
one integrated circuit. Due to a high manufacturing price, they are usually used
in larger productions (14).

• PIC Programmer, is an electronic circuit that interfaces the computer to the
microcontroller using the computers COMs. The PIC Programmer can write
data to the microcontroller and read it back for verification (15).

2.2 Software Development Methodologies
The research of SDMs provides grounds for developing this production process and
can be found in section 3.2.4 The Designed Software on page 18. There are about 55
SDMs today with even more hybrid versions, making it difficult for developers to filter

7

and choose which methodology is most suitable for their project (16). The easiest way
of categorizing these methodologies is by dividing them into lightweight and heavy-
weight. The heavyweight was introduced much earlier in software development and
typically consisted of larger teams, but it is still prevalent today (17). The lightweight
category is being adopted more in today’s software projects. Being the more iterative
approach to software development, Agile, a lightweight methodology, bases its idea
on getting the product to market quickly (18). While Waterfall, a heavy methodology,
focus less on time to market but rather on a complete, secure, working, and finished
product.

The studies of various SDMs provide knowledge regarding the most suitable ap-
proach for this project. Typically software development consists of teams larger than
two, as in this Bachelor Thesis. The Agile approach to developing software has its
strengths in code re-usability, where the product can change vastly over time. How-
ever, its weaknesses lie in having a stressed product that may result in repetition before
completion. Waterfall has its weakness in that once the product/development process
finishes, the testing of the product has not been as exposed to real-life usage as the Ag-
ile process, as its product has been on the market for a longer time. These two create
a perfect example of when to use what methodology. E.g., when creating an applica-
tion for a bank, one would use the Waterfall method. When developing a media player
application, a few bugs and somewhat restricted performance is not as devastating as a
banking application malfunctioning. Most software companies do not make an effort
with SDMs and usually go with the most popular one (19). There are a few things
that these SDMs have in common: good documentation, version control, and extensive
testing (20).

2.3 Digital Communication
This subsection presents digital communication and data verification subjects, which
are paramount to this project.

2.3.1 Parallel/Serial Communication

There are a few parameters to fulfill when establishing communication between two
entities. Both entities have to speak the same language (21), set the rules at which baud
rate they are to speak, and decide whether the communication should be parallel or
serial. Also, in which duplex the communication should happen. Digital communica-
tion uses binary language; unlike the alphabet, which commonly has 26 letters, binary
language has two: 1 or 0 (22). A 1 is characterized and produced from a short period
of ”high” voltage, and a 0 is created from ”low” voltage (23). These are called bits.
In parallel communication, each bit is transferred through separate links, whereas in
serial communication, all bits share the same link (23) (see Figure 2).

8

Figure 2: This figure illustrates the differences between parallel and serial data trans-
missions. The left image shows parallel communication showing 8 bits in transmission
using separate wires, and the right shows serial communication showing 8 bits in trans-
mission using the same wire connection.

2.3.2 Error detection

Like all other communication, there can be errors disrupting the communication be-
tween entities, and digital communication is no exception. In digital communication,
there are two types of errors: Single-bit and Burst errors. A single-bit error occurs
when a 0 flips to a 1, or the opposite during transmission between two entities (see
Figure 3). A Single-bit error mainly occurs in parallel data transmission (24). For in-
stance, using eight wires to send the eight bits of a byte, if one of the wires is noisy,
then a single bit is corrupted per byte.

Figure 3: The figure displays a single-bit error where bit 6 is corrupt. During trans-
mission, the original bit value of 1 is changed to a 0. The original byte is 0b10001111.
However, the received byte is 0b10001101.

9

A burst error is when two or more bits are changed from 0 to 1 or 1 to 0. The
interval from the first to the last corrupt bit defines the length of a burst error. Burst
errors are most likely to occur in serial data transmission (25). The number of affected
bits depends on the duration of the noise and data rate (see Figure 4).

Figure 4: The figure shows a burst error of length 5. The second bit marks the beginning
of the burst, and the sixth bit marks the end. The original byte is 0b10101111, and the
corrupt byte is 0b10001101.

Several error-detecting techniques help catch these errors, but there is no perfect
solution, and each technique requires an analysis for the given situation (26). Three of
the more popular techniques are:

• Single parity check is the most straightforward error control. It adds a single
parity bit to a byte word or simple data units. Simple parity is tolerable for detect-
ing occasional errors but becomes less satisfactory for higher error probabilities
and larger data (27). Unfortunately, a single parity bit detects only odd numbers
of errors (27). For instance, using even parity, the extra parity bit is set so that
the total number of bits in the character plus parity set to one is even. With odd
parity, the weight of the character plus parity is arranged to be odd (28).

• Checksum - The notion of a checksum is defined as ”the total of the numbers in
a piece of digital data, used to check that the data is correct.” (29). For data com-
munication, the purpose of a checksum algorithm is to balance the effectiveness
of detecting errors with the cost of calculating the check values (30). A check-
sum is a sequence of numbers and letters used to check data for errors. Data is
run through an algorithm to produce a checksum. The algorithm uses a crypto-
graphic hash function that takes an input and produces a fixed-length string (31).
The process that generates the checksum is called a checksum function (32).

• Cyclic Redundancy Check (CRC) was first introduced in 1961 by W.Weasly
Peterson (33), encoding data messages by adding a fixed-length check value.
The basis for CRCs is polynomial arithmetic, base 2 (30).CRCs come in differ-
ent lengths, CRC32 detects errors less than 32 contiguous bits within a packet
and all 2-bit errors less than 2048 bits apart (30). For other types of errors, if they
occur in data with uniformly distributed values, the chance of not detecting an
error is 1

232 or 1
4,294,967,296 (34). CRCs are especially suitable for hardware im-

plementation at very high operating speeds and are present in most data commu-
nications systems (27). Error detection happens by comparing an Frame Check
Sequence (FCS) computed on data against a FCS value initially computed and

10

either sent or stored with the original data. An error is declared to have occurred
if the stored FCS and computed FCS values are not equal (35). In many cases,
CRCs provide dramatically better error-detection performance than checksums
at short-to-medium data word lengths because of a higher Hamming distance,
and give better performance for long data word lengths (26).

2.3.3 Master/Slave Model

In the master/slave model of a system, a master entity receives one or more requests,
then creates slave entities to execute them. Typically, the master controls the number
of slaves and what each slave does (see Figure 5). A slave runs independently of
other slaves (36). A slave node has three modes: receive, work, and send. The slave
node receives parameters from the master node, followed by the work phase. In the
operational phase, the slave node runs a process with the received parameters from the
master node. After the process completion, the slave node notifies the master node
and receive a confirmation to send back the process results. This paradigm is generally
suitable for shared-memory or message-passing platforms since the interaction is two-
way (37). A program is said to have synchronous interaction when the tasks need to be
performed in phases (37).

Figure 5: Master-Slave overview. The blue master node receives a request from the
company. The master node generates parameters for the slave-nodes to process. The
slave nodes communicate back the process results to the master node.

11

2.3.4 Duplex

A duplex communication system is a point-to-point communication model with two
or more entities (38). There are three duplex communication models: Full, half, and
simplex. The following list presents the different types of duplex, for illustrations and
the characteristics between the duplex models (see Figure 6).

• Full-duplex is characterized by: both parties communicating with each other
simultaneously (39). An example of a full-duplex is cellular telephone technolo-
gies (40); in this model, both entities can talk and listen to each other simultane-
ously.

• In a half-duplex system, both parties can communicate with each other, but not
simultaneously; the communication is one direction at a time (41). An example
of a half-duplex device is a walkie-talkie (40), where one entity talks while the
other listens.

• In simplex, communication can only happen in one direction. An example of this
is the communication between the remote control and a television. The remote
control sends signals to the television but does not receive any signals.

Figure 6: The top example shows the full-duplex transmission and illustrates that
both A and B can send and receive data simultaneously(cellphone). The lower left
image demonstrates the simplex duplex model and shows that only A can transmit
data while B is only receiving(television). The lower right image visually represents
the half-duplex model, showing that A and B can both send and receive data but not
simultaneously(walkie-talkie).

12

2.4 Similar projects
In 2014 Prithviraj R. Shetti and Ashok G. Mangave published a project (42) controlling
a DC motor using a microcontroller and a C# GUI using a similar control structure to
this project. The microcontroller acts as a link between hardware components and
operators. Communication comes to and from the microcontroller both from operators
using a GUI and from hardware components. An operator sends instructions from the
GUI to the microcontroller, which then performs these instructions by managing the
different components. The underlying Arduino code utilizes the digitalWrite function
to set pins either high or low, which is the basis for many control functions in this
automation project. Another similarity is that both projects use serial ports to establish
communication between the microcontroller and GUI. In 2016 Udari Bhagya Liyanage
published Speech Recognition for MAV (43) with similar components: An Arduino to
control peripherals and a GUI developed with C# using a Windows Forms app. The
foundation of this project is sending instructions in the form of voice commands to a
microcontroller which then performs instruction-related tasks. There are similarities
regarding the process control structure as the automation project uses text instructions
to tell the microcontroller what actions to perform. The MAV project relies on serial
port communication to pass information between the GUI and microcontroller like the
automation project.

13

3 The Development System Setup
This section presents the system setup and methods to address the mentioned problems
in the problem statement section.

3.1 Materials Used
This subsection introduces the different tools used in developing an automated digital
production process for electronic keys. Swedlock AB provides the hardware compo-
nents included in this project and covers any additional software licenses or tools costs.
Participating students cover travel expenses.

3.1.1 The Hardware Platform

Swedlock provides the circuit boards necessary for developing this digital production
process. These boards consist of 33 components, not counting the fixture and the keys.
The main components of the circuit (see Figure 1) are described in section 1.2 Instal-
lation Cycle on page 3, are the D1 mini lite microcontroller (44), NSDSP-1-3V3 PIC
Programmer (45), shift registers (46), analog switches (47), ADC (48), MUX (49),
Current monitor (50) and an optical-sensor (8).

During the research in section 2.4 Similar Projects on page 13, the microcontroller
used for the two projects had six analog inputs compared to one analog input in this
project. Two or more analog inputs would improve the efficiency of the digital pro-
duction process as it allows parallel production, resulting in even higher production
rates.

3.1.2 The Software Platform

Discussions with the responsible personnel at Swedlock led to the use of C# and the
.NET Core framework for developing the operators GUI. A study (51) shows that C
and Java have faster executing times than C# and C++. Even though C# has slower ex-
ecuting times, it is a recommended programming language for developing applications.
This shows that developing the operators’ software using either Java, C, or C++ would
increase the software performance in terms of speed, which is something to consider in
future work. Regarding the embedded programming of the microcontroller, Arduino
Integrated Development Environment (IDE) was chosen after discussions with Swed-
lock. The Arduino IDE utilizes the C++ programming language (52), a superset of C.
The Arduino IDE includes support for the microcontroller embedded within the circuit,
providing options for linking and uploading software. The PIC Programmer manufac-
turer offers several free software programs enabling its interactions. As for the PIC
Programmer, nsprog is a versatile command-line programmer. The nsprog software
provides commands through command-line inputs (53) such as verifying connections,
erasing data, uploading and patching .hex (54) files or .nsz (55) files.

15

3.1.3 Other Materials

Besides the necessary hardware and software tools, a few extra materials are worthy of
mention. For testing purposes, a multimeter is essential. The circuit and its hardware
components are connected to computers using various cables. The circuit boards are
protected from electrostatic charge damages using Electrostatic Discharge (ESD) mats.
Connecting different hardware components to the circuit boards requires a soldering
station. Key dimensions and fixture reference points require calipers for measurements.

3.2 The Development
The development of this production process relies on different methodologies to solve
various tasks. This section covers methods relating to vital tasks during the different
development stages of this project. The background research results in the use of a hy-
brid version of both heavy and lightweight SDMs for the development of this process.

3.2.1 Hardware Component Investigation

As mentioned in section 1.4 Problem Statement on page 4, the initial step is research-
ing the hardware. Swedlock developed an integrated circuit prior to the start of this
project. This circuit’s purpose is to serve as the underlying hardware for the digital
production process. In order to gather knowledge regarding this circuit and its com-
ponents, research is essential. The circuit came with an associated component list
containing every component’s name and serial number, which provides a starting point
for the hardware research. Most electronic components have a datasheet detailing the
components’ functionalities, electronic characteristics, and general information. Find-
ing datasheets for each component and studying them provides grounds for further
understanding of the circuits’ functionalities. Once the purpose of each component
is clear, the next step is to gather knowledge regarding their interactions by studying
the circuit diagram. To further extend the knowledge of the circuit, various experi-
ments are performed on isolated parts and components and the outcomes are recorded.
Multimeter measurements or LED lights verify the outcome of these experiments.

3.2.2 Microcontroller Control Functions

The outcome of the hardware research provides knowledge regarding what is needed
to control different components and parts of this system. These studies makes it evi-
dent that routines and functions to control different components are vital for the sys-
tems’ functionality and development. Since the microcontroller responsible for most
control operations is limited, the circuit utilizes 8-bit shift registers to function as
Input/Output (I/O) pins and transfer logical ones/zeroes to relevant components of the
system. The hardware design lets the microcontroller send inputs from one pin to the
four shift registers (see Figure 16) in section 4.2 Control Functions on page 26. This
knowledge results in a function that writes bytes to these shift registers rather than
shifting them bit by bit, (see Figure 13) in section 4.2 Control Functions on page 25.
The implementation of this function varies depending on the input format; a decimal
or hexadecimal input requires binary translation, and a binary input does not since the

16

shift registers only allow a 1-bit input. Furthermore, the first-bit input represents the
Most Significant Bit (MSB) in the shift register, which requires modifications depend-
ing on the input format since this results in a reversed byte representation. Tests are
needed to verify that this routine operates as desired. There are a few different ap-
proaches to testing this routine, firstly, set an 8-bit register and measure the outputs
with a multimeter. Secondly, connect LED lights to specific register pins and check
their activity for different inputs (see Figure 8) in section 4.1 Hardware Verification
on page 21.

Some operations and components require specific setups. Creating functions for
these increase the efficiency of the software design as these operations are performed
numerous times across an installation cycle. The development of these routines re-
quires setting specific pins in a timely order to match the timing diagrams of compo-
nents. It is essential to follow the datasheets detailing timings and pin combinations for
these components to perform as desired. The necessity of these functions comes from
the repeated use of the affected components during production. The development of
these routines uses the previously mentioned routine to control the shift registers. The
shift registers serve as the controller for the different components required for specific
operations, such as current monitoring. The testing of these functions varies depend-
ing on the operation. For instance, testing the functionality of the current monitor is
done by sending analog data to the microcontrollers ADC and writing the integer rep-
resentation to memory, and then comparing that to the current measured over the same
components using a multimeter. Testing the optical sensor could be done similarly but
instead comparing the integer representation of the analog to digital conversion to the
color output by the RGB lights embedded within the key. Testing the PIC Programmer
is done by sending various commands through the command line to erase and program
a key and then manually checking if the key responds to being activated (see Figure
12) in section 4.1 Hardware Verification on page 24.

3.2.3 Two-way Communication

The primary tools to for the development of the GUI are C# and the .NET Core frame-
work. This framework offers support for dealing with Serial/COMs, which provides
the possibility of developing the GUI to allow Serial/COM with the microcontroller.
The chosen option for data transmission verification is CRC as discussed in section
2.3.2 Error Detection on page 9 due to its error detection capabilities and speed. CRC
can detect inverted and erased bits and notify the receiver of transmission failure. If an
error is detected, the receiver can request a re-transmission or ignore the corrupt data
see section 2.3.2 Error Detection on page 9. Developing a Serial/COM for the GUI
using the .NET Core framework and utilizing CRC libraries increases the communica-
tion reliability.

During the research in section 2.4 Similar Projects on page 13, the digital commu-
nication between the GUI and the microcontroller in the two projects did not use data
verification for transmissions. By not utilizing a data verification method, which is a
foundation for reliable and sustainable systems, the system is vulnerable and at higher
risk of system failure.

17

3.2.4 The Designed Software

The circuit studies provide direction for the design of the different software. It is evi-
dent that the order of operations is of importance. For instance, a key does not output
any measurable current before it goes through the installation process since no soft-
ware prompts the RGB lights to activate as power is applied, which means measuring
current outputs before software installation results in faulty test results (see Figure 7).

Figure 7: Flowchart of operation order displaying measurable outputs.

The microcontroller limits the design options since it contains one analog input
pin. The optical sensor and the current monitor can not report data simultaneously,
interfering with any ideas of parallel production. The underlying hardware limits the
production to one operation and one key at a time, which means that producing mul-
tiple keys in a single production cycle happens sequentially. Producing keys this way
requires the .hex installation file to be patched before each key installation, emphasiz-
ing the interaction between the GUI and microcontroller as the GUI handles this action
through command line inputs but requires specific pin setups from the microcontroller.
The .hex file contains the relevant patching information for each key. The operator gets
continuous feedback during the production phase of each key detailing the results of
tests, elapsed time, and progress, stressing the importance of the interaction between
the microcontroller and GUI and their communication.

The background research in section 2.2 Software Development Methodologies on
page 7 states that the most common critical aspects of software development method-
ologies are: good communication, version control, and documentation. As this digital
production process develops, continuous communication between both parties is tak-
ing place to ensure that the project is taking the right path and fulfills its needs and
requirements. To ensure this, methods developed in the Arduino IDE and the .NET
Core framework has adequate documentation, and a version control environment to
provide greater trackability and broader documentation.

18

3.2.5 Production Test Compilation

Compiling a report containing common errors, causes, and frequencies requires a large
test pool. Running these keys through the production process is time-consuming.
Therefore it is vital to streamline this process. This process utilizes test scheduling
and batching test samples to reduce the time requirements. However, the core of this
segment is conducting tests on extensive ranges to ensure that the test data is accurate.
Well-prepared tests are essential in keeping this process time-efficient. Developing
these ahead of time is a crucial component in reducing the time constraints of this
process. These tests primarily focus on power consumption, and verifying software
installations.

3.3 The Test and Verification of the Solution
The primary objective of this project is to develop a digital production process efficient
enough to produce new electronic keys. The section 1.4 Problem Statement on page 4
mentions a time requirement of 30 seconds. Calculating a mean production time using
several measurements accurately compares this goal. However, another factor to con-
sider when analyzing this result is the scalability of the automated production process,
as upscaling the production impacts the results. Comparing the production times of the
old manual production technique to the new automated approach for a single key does
not consider the benefits automation brings when producing multiple keys simultane-
ously.

A report of common errors and their causes is requested. This report provides
a detailed breakdown of possible causes of common errors in the digital production
process. To ensure that this report meets the expectations, it provides reliable infor-
mation, further helping the development of this production process. The findings and
actions based on this report provide grounds for analyzing its significance. The hard-
ware presents possibilities for measuring current output and verifying the LED pattern
functionality of keys during production. Analyzing the functionality of these compo-
nents and functions is essential as it determines the reliability of these tests. Manual
measurements of current output and visual verification of LED patterns confirms the
functionality of these operations.

It is essential to test and analyze the communication between the operators’ soft-
ware interacting with the embedded system. Staging simulations of different produc-
tion scenarios using faulty keys to mimic daily production provide grounds for this
analysis. These simulations allow for collecting, analyzing, and categorizing test data.
Simulations provide real-life scenarios of encounters with faulty keys by creating tests
and scenarios to provoke errors and find their solutions. The basis for the result analysis
is ”If it isn’t tested, it doesn’t work.” (20).

19

4 Results Achieved
The result of this bachelor’s thesis project is an automated digital production process.
A microcontroller embedded within an IC and a GUI serve as the foundation for this
process. Together, these components manage the installation, testing, and flow of in-
formation during the production of intelligent keys. The following subsections present
the results of the different development stages.

4.1 Hardware Verification
It is essential to acquire sufficient knowledge regarding the hardware to automate the
digital production of intelligent keys using a microcontroller and different electronic
components. The first step in this research stage is studying an electronic diagram
of the microcontroller and the connected components combined with their datasheets.
These studies form theories of the circuit and components’ functionalities. Several
experiments over the different components transform this theoretical knowledge into
practical understanding. The combination of theoretical and practical understanding
of the building blocks is necessary for the continued development of this production
automation.

The following list contains details regarding the performed experiments during the
hardware investigation phase.

• The shift registers are experimented on by shifting different bit sequences and
verifying the stored byte. Verification happens through multimeter measure-
ments and activation of connected LEDs (see Figure 8).

Figure 8: Overview of information flow of a shift register and markers indicating LEDs
and multimeter output measurements. Q0-Q3 represents the used LEDs to verify the
8-bit shift registers. Q4-Q7 represents the multimeter used to verify the 8-bit shift
registers.

• Verifying the MUXs functionality is done by setting one input pin low and one
high and alternating the control pin. Output verification happens by multimeter
measurements. To further verify this functionality, the values of the input pins
are changed (see Figure 9).

21

Figure 9: The figure displays the experiments on the MUX and its functionalities. The
control pin decides which of the input signals is forwarded. The left image shows a
low input on pin 1 and a high input on pin 2, and the control pin set for input 2. The
right picture displays the opposite.

• The current monitor and ADC converter experiments include sending voltage
through different resistors and calculating the values within the microcontroller.
These values are printed on a screen and compared to the supposed values, and
the multimeter measured values (see Figure 10). This experiment requires repe-
tition for each of the three different transistors. The purpose of the transistors is
to match the current supposed to be measured.

Figure 10: This figure illustrates the different steps used to verify the functionality of
the current monitor and ADC. A 3.3 voltage power supply passes through a resistor and
the current monitor. The current is manually calculated for comparison. The current
monitor then forwards the signal to the ADC which converts the analog input to a
digital representation. The signal is measured on the analog input pin for comparison.
The microcontroller prints the converted value to a display, and the three values are
compared.

• Experiments on analog switches include cycling through the eight input pins and
verifying that the output pin holds correct information by measuring input and
output using a multimeter. The enable pin is tested by setting it on and verifying
a high output and then setting it low and verifying a low output (see Figure 11).

22

Figure 11: This figure illustrates the select pins set for input pin Y1 and the enable
pin set enabling output. Multimeter measurements are displayed on input pin Y1 and
output pin Z to verify the signal.

• The functionalities of the PIC Programmer are experimented on by manually
installing keys using command line inputs (see Figure 12). The related registers
and pins are set manually for PIC operations, allowing communication between
the microcontroller, PIC Programmer, and key. The command line reports the
results of each operation. The installation is verified using sync stations to ensure
that the key contains the correct software and unique identifiers.

23

Figure 12: This flowchart displays the verification of the PIC Programmer. The pro-
cess starts by setting the relevant microcontroller pins allowing communication. A
command sent through the command line verifies the connection. Upon successful
verification, a new command erases the device. When erasure is complete, the next
command programs the device. If the programming operation is successful, the instal-
lation is complete, and the functionality tests finish by verifying the credentials of the
key using a sync station. If all these operations are successful, the installation satisfies
the test requirements.

4.2 Control Functions
The experimental phase concluded that some components require dedicated functions
due to the number of inputs needed for some operations.

The following list contains information for the associated control functions.

• The shift registers contain eight output pins which translate to a byte of data.
However, the register only allows one bit of input at a time. Inputs require the
specific timing of certain operations, which is a repetitive task. This is the rea-
soning for developing a function to write full bytes (see Figure 13). The second
purpose of this function is to clear a shift register. Different bytes are shifted into
the register to test this, and the output is measured using a multimeter and LED
lights. The MSB is the first bit that shifts into the shift register; the last bit is
called the Least Significant Bit (LSB).

24

Figure 13: This figure illustrated the functionalities of the writeByte function. It takes
a binary representation of a byte as an input. In this example, the input is 0b10101001
with the MSB located to the right in the shift register.

• The current flow from a key is measured using several different components
(see Figure 14). It is a commonly occurring operation during production and is
necessary for testing purposes. This function reads the analog value and answers
with a digital one when called. Currents are sent over different resistors to test
this. Comparing the functions answer to a value measured on the analog pin
using a multimeter confirms the functionality of this function.

Figure 14: This block diagram illustrates the components involved in measuring current
output. This current flows from the key to the analog switch. The switch forwards the
signal to the current monitor. The current monitor then sends the measured current to
the MUX which relays the signal to the ADC embedded within the microcontroller.

• This automated production process relies on communication between different
sources, and the data transfers require validation. This validation happens by
computing and comparing checksums for each transferred data package using
CRC32 algorithms. Both outgoing and incoming packages require checksum
computations. Outgoing and incoming packages handle checksums differently
and have separate functions (see Figure 15). A hashed version of a checksum
computed on the input string of each outgoing package gets appended to the
original message before sending it to the receiver. This responsibility lands on
the first CRC function. The second function is responsible for receiving data.
This function input is a string containing a message and the appended checksum.
A new checksum is then calculated and hashed from the message and compared
to the original checksum validating the data package. Comparison failure re-
sults in the function discarding the source package. Checksums are manually
computed and attached to ensure that the different algorithms compute the same
values to test these functions.

25

Figure 15: The left flowchart illustrates the order of operations for sending messages
containing a hashed CRC32 checksum, and the right flowchart shows the operations
involved in receiving this message.

• Discoveries in the hardware investigation makes an option of setting all neces-
sary pins for each installation iteration evident. Handling all pin setups prior to
installation requires fewer operations during production. The order of pin setup
operations is essential since the shift registers get their input from the output of
the previous register (see figure 16). The repetitiveness of this task motivates
developing a function. This function takes integer values working as addresses
for different key slots as input. Testing this includes sending input addresses
and verifying output on shift registers and connected components by multimeter
measurements.

Figure 16: This block diagram displays the 32 steps a bit takes cycling through the four
connected shift registers. The serial input goes through the four registers and arrives as
the serial output 32 inputs later.

26

4.3 GUI
The GUI is responsible for providing operators with information throughout the pro-
duction process, sending and receiving instructions to and from the microcontroller
and PIC Programmer, and managing production settings. The production window of
the GUI is on display for operators during production. This window consists of status
boxes for each key slot indicating if it is active, failed, or passed, a progress bar indicat-
ing cycle progress, and an install button to start production (see Figure 17). The status
boxes and install button uses color codes to indicate production results (see Figure 18).

Figure 17: This figure illustrates the main window before installation starts with four
keys’ selected. The yellow status boxes indicate that these locations are selected and
not yet installed.

Figure 18: Left image shows the main production window after an installation cycle of
key 2-8 with success, and the right image shows the same window but with a failure
for key 1, pass for key 2, and, key 3 and 4 waiting for installation.

27

The GUI includes a more advanced view to display detailed information about each
operation (see Figure 19). This view includes received information and instructions
from the microcontroller. The intended use of this log window is debugging. The in-
formation found here is underlying triggers and operations executed and is not deemed
essential for production. This window has two options: To clear the log or save it,
either remove the window’s contents or save it to a text file for later review.

Figure 19: This is a screen dump of the log window during production. In this example,
the current measurements were not within the approved boundaries failing installation.
The window contains another error showing issues with PIC Programmer communica-
tion.

4.4 Production Settings
The IC design allows for multiple key slot locations and three different current param-
eters for production, while the fixture holding keys in place during installation allows
two key slots. These multiple selections are managed by production settings. Both the
microcontroller and GUI requires these settings for the production process to function.
If the microcontroller is not executing any operations, it is in a polling state. In this
state, the microcontroller is waiting for instructions. One of these instructions is pro-
duction settings. They are responsible for current parameters, key slot locations, and
what serial port to use in production.

An operator sets these settings through the settings tab in the GUI (see Figure 21).
The settings require a choice of one current parameter before saving. Once an operator
has filled the settings, the GUI sends an instruction to the microcontroller informing
it that new settings are coming. The microcontroller answers that it is ready to re-
ceive new settings, and this prompts the GUI to send which key slot locations to use.
The microcontroller receives key slot location settings and stores them for later use.
It continues by asking the GUI for current parameters, which the GUI answers. The
microcontroller receives the current parameters, stores them, and confirms that it has
received all production settings. When the GUI receives confirmation, it enables in-
stallation (see Figure 20).

28

Figure 20: This flowchart illustrates the operations and steps included in managing
the production settings along with the communication between the GUI and microcon-
troller.

Figure 21: Displays the settings window with keys 1-4 selected, current parameters set
to 60mA, and the COM 3 connected.

29

4.5 Installation Cycle
The order of operations during installation is relevant for production to be successful.
It affects both time and completion rate. The operation order below describes a pattern
covering everything from the requirements specification.

Operators start an installation cycle using a button on the fixture or in the GUI. The
microcontroller is in a polling state, looking for operator input to begin. If an opera-
tor gives input, the microcontroller verifies this by sending a message to the GUI. It
then proceeds by checking the settings for the first key installation slot. Once it finds
the slot, it sends a message to the GUI initiating the patching of the installation .hex
file. The GUI completes the .hex file patching and confirms completion to the micro-
controller. The microcontroller sets all shift registers to allow necessary installation
and testing operations for the specific key slot and informs the GUI when ready. This
transmission starts the installation process. The GUI verifies PIC Programmer commu-
nication, erases the keys’ microprocessor, and installs the patched .hex file. The GUI
informs the microcontroller as the .hex file installation finishes, which initiates the cur-
rent tests. The microcontroller measures the keys’ current output three times matching
the LED pattern. If each current test outcome resides within the approved boundaries,
the microcontroller reports test success to the GUI. If not, test failure. The GUI then
displays the results for the operator. If settings include more than one key location, this
process repeats for each slot until completion (see Figure 22).

30

Figure 22: This flowchart illustrates the operations, steps, and communication neces-
sary for one installation cycle iteration.

31

4.6 Production Tests
During the development of this process, system tests ran on two different keys. More
extensive production tests are made, including new and larger test pools, as these were
successful. These tests have a 25% pass ratio for key installation. Analyzing the test
data shows differences of up to 0.5 millimeters in key dimensions. These differences
cause the installation pins fixed in the fixture to miss the receivers embedded on the
keys circuit board (see Figure 23). The reference points when fixating keys are the
blade and the inside of the top loop. By adjusting the location of the key within the
fixture, some of the previously failed keys pass. However, the previously passed keys
do not, resulting in a new reference point when fixating the keys.

Figure 23: Left image shows key dimensions and original key fixation, and the right
image shows fixture installation pins.

An analysis of the installation pins and receivers results in a proposition to increase
the size of the receivers and move three of them to the other side of the battery holder,
to allow the size increase (see Figure 24). Increasing the size of these receivers allows
for a greater margin of error in terms of key alignment within the fixture.

32

Figure 24: Left image shows current receiver size and placements, and the right image
shows proposed size increase and new placements.

As there are several batches of keys with the old circuit board produced, there is
a need to increase the success rate of the production process before the new circuit
boards arrive. This results in spring-loading one side of the fixture to push the key into
position. Further measurements of key dimensions help find a new reference point in
the battery holder located on the circuit board of the key (see Figure 25). When running
the same test pool with the modified fixture, results increase to a 96% pass rate.

Figure 25: Left image shows the old and new fixation techniques side by side, and the
right image shows the new reference points.

33

The findings of these production tests are the basis for reporting the most commonly
occurring errors and causes during production. The test data and measurements lay the
foundations for suggestions regarding possible improvements.

4.7 Results
This subsection contains a list of results from this thesis project.

• A production process that performs serial installation of one or two keys in under
30 seconds per key.

• A user-friendly GUI with production settings for up to eight keys and three cur-
rent settings. The GUI contains a log window with detailed information regard-
ing the production process; this can either be saved or erased by the operator.
The GUI shows the progress of each key through both a progress bar and status
boxes for each key during the production cycle.

• Established a protocol for two-way communication using CRC32, Half duplex,
serial communication, and the master/slave model.

• Created tests and scenarios using functional and nonfunctional keys with differ-
ent attributes to simulate a real-time digital production. Developed functions to
measure the current flowing through the keys to verify LED patterns.

• Identified the most common errors using this production process: connection
failure, erasure failure, and programming failure. These errors are caused by the
connectivity between the receivers on the key circuit and the installation pins
missing. The cause that makes the connection miss is the variation in dimension
of the keys and the receivers’ variation in placement.

• Provided suggested improvements based on the most common errors report for
increased reliability which concluded in a new reference point for the socket
holding the keys during digital production (see Figure 25). Furthermore, sugges-
tions to change the placement and size of the receivers on the keys circuit (see
Figure 24).

34

5 The Efficiency of the Solution
This section discusses existing solutions, scalability, reliability, efficiency, and societal
aspects. The following subsections contain comparisons to the project requirements in
section 1.6 Requirements Specification on page 6.

5.1 Comparison with existing Solutions
As the target of this production process is unique, the only similar product to compare
with is the old manual production process. There are many differences between the two
production lines. However, the biggest one is automation. The manual process requires
an operator’s complete focus from start to finish, whereas the automated process frees
time during installation cycles. Another factor to consider is the human factor. An op-
erator can not perform a repetitive task the same way consistently every iteration while
a machine can, which suggests that the automated process offers greater reliability.

Comparing the raw production times of both processes shows that the automated
process is faster as this process produces eight keys in 2 minutes 18 seconds using a
one-key slot installation cycle. In contrast, the manual process needs 2 minutes 31 sec-
onds to do the same. This comparison only regards the actual time it takes to program
eight keys. The automated process runs independently during each installation cycle,
giving operators free time between cycles. The manual process requires the operator’s
full attention for the duration of the cycle. Furthermore, the automated process tests
the current output of each key during the LED pattern, and the manual process does not.

Another important consideration is the skill of the operator. The manual process re-
quires the operator to hold the five installation pins against the receivers while pressing
buttons and holding the pins still during installation. If these pins slip off the receivers
for just a moment, the installation fails. In opposition, the automated process deals
with this alignment automatically, requiring less training and skill to operate. The GUI
notifies the operator of the production process through status boxes, a progress bar,
and color codes. These factors imply a user-friendly GUI and show that the sixth and
seventh requirements in section 1.6 Requirements Specification on page 6, has been
fulfilled.

Comparing the communication results between the GUI and the microcontroller to
Speech Recognition for MAV (43) using COM shows that the control structure of send-
ing instructions to a microcontroller either via voice commands or text strings works for
systems like this. In both cases, the microcontroller recognizes different instructions
and reacts accordingly. As this control structure performs satisfactorily, it presents
opportunities to develop similar projects with a larger variety of instructions. Opportu-
nities to further explore the format in which recognition of instructions happens might
have more justification since the control structure provides working examples using
different recognition techniques. The results of (43) provide this project with another
option to control the production process. The strong points of using voice commands
are improvements in flexibility and usability; however, the production process’s work

35

environment contains noise. For this reason, using voice commands to control the pro-
duction process is not optimal as other sounds cause interference. Also, if more than
one fixture is running, the voice commands would most likely collide as the different
systems have no way to determine which command is for which machine. If back-
ground noise is not an issue, command collisions can be prevented by adding unique
identifiers to each machine and its voice commands.

Verifying embedded systems can be difficult and require some imagination, as most
operations happen within a microcontroller without visual confirmation. During this
project, a majority of tests on functions and components occur using either LEDs or
multimeter measurements. These techniques might seem rudimentary, but they pro-
vide some form of verification when options are limited. The reliability of these testing
techniques proves to be good as they were a fundamental part of verifying functionality
in many stages in both this project and in Speech Recognition for MAV (43). A weak
point in the MAV project testing methods is only using LEDs connected at the final out-
put, as this means there is no way of knowing about possible signal altercations. There
is also no test verification since there are no values or other outputs for comparisons.
In the automation project, signal measurements occur at each stop along the circuit,
and the output is verified using multimeter measurements, digital representations from
sensors, and LEDs, which offers more possibilities for verifying system tests. Due to
the testing limitations of embedded systems, a strong point is having multiple different
test methods of the same components or functions to compare results.

A weak point with the automation project compared to (43) and (42) is the micro-
controller. This project uses a basic microcontroller with one analog input pin, limiting
the number of analog sensors. The other two projects use a more advanced microcon-
troller with six analog inputs offering the possibility of using several sensors simulta-
neously. If applied to the automation project, this enables parallel production, which
dramatically improves production rates. Another weak point with both (43) and (42)
is that they do not contain any form of error detection, and this brings system security
risks. Especially in the aviation industry, where security is crucial. No error detec-
tion technique allows data manipulation to happen more frequently and go undetected;
if data manipulation happens, the microcontroller receives faulty commands, which
causes system failures. The automation project has CRC32 algorithm implementations
to prevent such errors and to increase communication reliability. The only negative
side effect of the implemented error detection is the time required to perform the cal-
culations for each message sent and received between the GUI and the microcontroller.
Error detection is, however, essential in digital systems.

5.2 Scalability
There are many opportunities to upscale this production process to further accelerate
production times. As it stands today, the circuit board embedded within the fixture
can handle eight keys simultaneously, and the fixture has room for two keys. The
production times can improve significantly by adjusting the fixture to make room for
eight keys instead of two. The estimated production time for an eight-key cycle is 1

36

minute and 31 seconds. This time takes into consideration both programming keys and
loading the fixture. The programming and testing take 58 seconds, and the loading
takes 33 seconds. One operator can manage three eight-key machines with about eight
seconds of downtime per machine (see Figure 26). Running production for an hour
with this setup results in 836 keys when factoring the 96% installation success rate.
Using the manual process, scaling the production to this rate requires three operators,
increasing costs significantly.

Figure 26: This graph illustrates two installation cycles on three machines operated by
one operator with marked loading, installation, and down times.

Another way of scaling this process is by detaching the fixtures from the machine
and rotating them on a conveyor belt, allowing the operator to load several fixtures
at once and then leave the conveyor belt to manage the loading of the machine. Do-
ing this eliminates any downtime between machines since the conveyor belt can pass
through three machines supplying each with a new fixture of keys simultaneously. By
having more fixtures than machines connected to a single conveyor belt, the operator
can load the fixtures while the machines are producing keys. Adding more fixtures to
a conveyor belt gives the operator enough time to operate more than one belt, signifi-
cantly improving production rates. Using the same numbers as the above example, an
operator running three conveyor belts can produce 2509 keys per hour (see Figure 27).

Figure 27: This figure illustrates the machine placement, number of fixtures, and the
rotational direction of the proposed conveyor belt solution.

37

5.3 Reliability
The reliability aspect of the automated process comes mainly from the machines’ abil-
ity to perform a monotonous, repetitive task the same way every time. Manually doing
the same task, there is some variation in performance. Another reliability factor is that
a human operator can be distracted by colleagues or surroundings. An issue that is not
present with a microcontroller. Keeping this in mind, an automated process performed
by a machine is less error-prone than a human performing the same tasks.

As stated in section 4.6 Production Tests on page 32, the success rate of the auto-
mated process using the previous reference point had a success rate of 25%, resulting
in low reliability. The low success rate is caused by the dimensions of the key blade
and the placement of the keys’ circuit. The placement of the keys’ circuit resulted
in a communication failure between the key and the PIC Programmer, which is the
most commonly occurring error. These findings suggest that the fourth and fifth re-
quirements in section 1.6 Requirements Specification on page 6 are complete. By
changing the reference point (see Figure 25) in section 4.6 Production Tests on page
33, the installation rate increased to 96%, increasing the reliability of the production
process. Section 4.6 Production Tests on page 33 illustrates the suggestion to move
and enlarge the keys’ receivers (see Figure 24), further improving reliability.

The automated process tests LED patterns by current outputs, which offers more
security regarding product quality. Human operators can only test LED patterns vi-
sually, which is more time-consuming and harder to verify. The automated process
tests imply that the second and third requirements in section 1.6 Requirements Spec-
ification on page 6 are complete. The automated process utilizes color codes to notify
operators of each key’s installation and testing status. The manual process prints a text
in a log window for operators to read. The color codes help eliminate operator-made
mistakes by clearly displaying success or failure.

5.4 Efficiency
By automating production, efficiency is affected. In this case, the production is ac-
celerated, reducing TTM. A faster production time and a less error-prone production
process significantly improve the efficiency of this production line. The automation
offers new opportunities for managing operators’ time as they provide waiting time
during installation cycles. Using this time to prepare new keys for installation or run
multiple machines simultaneously lets operators do more with the same amount of time
they previously had. This process produces the same number of keys roughly 10 sec-
onds faster than the old one while providing operators with time to do other tasks. This
section shows that the first requirement in section 1.6 Requirements Specification on
page 6 is complete.

Efficiency is affected by process reliability. Having fewer errors and a more user-
friendly process for operators helps secure high product quality. Testing LED patterns
using current output verifies LED functionality at production time. It can also help
identify internal coupling errors displayed by current spikes. These are tests that were
not available using the previous production method.

The efficiency of this process improves further by modifying the circuit boards

38

embedded within the keys. Doing this assists the installation pin to receiver align-
ment within the fixture, which currently is the most commonly occurring error. These
changes further increases the installation success rate, which improves efficiency even
more. As mentioned in the 5.2 scalability section on page 36, this process offers good
opportunities for upscaling. Having one operator run three machines instead of one
significantly accelerates production at a small cost.

5.5 Societal Aspects
This production requires a relatively low power supply since a laptop powers all neces-
sary devices. This process helps produce intelligent low power supply keys at a quicker
rate. Helping replace traditional keys faster since these can be programmed to access
several different locks reducing the number of keys needed.

This process positively affects the economic aspect of both Swedlock and munic-
ipalities across Scandinavia since the target customer is garbage collectors, first re-
sponders, and assisted living services. This key solution lets the same key access all
necessary locks for government employees, reducing the number of keys needed. It
also removes the need to change locks when keys are lost. Production is accelerated,
reducing TTM since an operator can produce more keys faster than was previously
possible using this process, resulting in more generated income.

Keys are not connected to a specific individual but instead to serial numbers. The
customer organization administrator manages the key permissions preventing abuse. At
production time, the only information available to operators is serial numbers. These
numbers have no link to any sensitive information.

39

6 Conclusions
From the previous sections, 4 Results Achieved on page 21, and 5 The Efficiency
of the Soloution on page 35, this thesis concludes that the project has delivered an
efficient digital production process. This process accelerates the production rate of
Swedlock ABs’ new product line and satisfies the project goal of producing a key in
under 30 seconds. This thesis has also identified the most common errors and their
causes associated with this production technique. The tests conducted throughout the
project have been meticulous and methodically performed to achieve a reliable pro-
duction process resulting in high product quality. Precautions have also ensured that
no sensitive information is sent back to the operator through the GUI. Each produc-
tion cycle ends with current measurements verifying LED functionality. These results
are available to the operator in the GUI. This project is developed using an iterative
approach to fulfill the needs of Swedlock; this resulted in a user-friendly GUI with the
functions required to produce electronic keys digitally.

Furthermore, a communication protocol is established between the GUI and the
microcontroller to enhance the reliability of the system. After determining the most
common errors and their causes, conclusions regarding the socket holding the keys are
evident. The sockets required a better reference point. The new reference point pro-
duction results increase from 25% to 96% regarding pass rate. This thesis has given us
plenty of experience in software development and the different challenges of automat-
ing a production process. We have used knowledge from our education and applied it
to a practical project in a natural work environment. This thesis provided insight into
the methods and structures used by companies and the differences between academic
and practical applications of computer science.

41

References
[1] Fortune Business Insights. Smart Door Lock Market Size, Share, Trends Global

Report [2027] [Internet]. Fortune Business Insights; 2020. [cited 2022 Mar
7]. Available from:. URL https://www.fortunebusinessinsights.
com/industry-reports/smart-door-lock-market-100215.

[2] ASSA ABLOY. Smart-Home Security The Growing Market for Smart Door
Locks Smart-Home Security Report 2016: The Growing Market for Smart
Door Locks [Internet]. ASSA ABLOY; 2016. [cited 2022 Feb 5]. Avail-
able from:. URL https://futurelab.assaabloy.com/en/wp-
content/uploads/sites/2/2016/10/Smart-Home-Security-
Report-2016.pdf.

[3] Swedlock. Smarta digitala lås och nycklar [Internet]. Swedlock [date unknown].
[cited 2022 Mar 7]. Available from:, . URL https://swedlock.com/se/.

[4] Swedlock. Swedlock Pro [Internet]. Swedlock [date unknown]. [cited 2022 Mar
7]. Available from:, . URL https://swedlock.com/se/swedlock-
pro/.

[5] Yale. Smarta låset Yale Doorman och allt för din hemsäkerhet [Internet]. Yale
[date unknown]. [cited 2022 Feb 7]. Available from:. URL https://www.
yalehome.com/se/sv.

[6] ID Lock. Smart, elektroniskt dörrlås för eftermontering [Internet]. ID Lock [date
unknown]. [cited 2022 May 26]. Available from:. URL https://idlock.
se/.

[7] ilockey. How Do Smart Locks Get Power? [Internet]. ilockey; 2021. [cited 2022
May 25]. Available from:. URL https://www.ilockey.com/how-do-
smart-locks-get-power/.

[8] Avago Technologies, ”Miniature Surface-Mount Ambient Light Photo Sensor,”
APDS-9005 datasheet, Jan. 2007. URL https://docs.rs-online.com/
be54/0900766b80db8930.pdf. [Accessed: 2022-02-07].

[9] Lutkevich B. Microcontroller (MCU). 2019 Nov [cited 2022 Feb 15]. In:
Techtarget [Blog on internet]. Techtarget: Brian Lutkevich; 2019-. Avail-
able from, . URL https://internetofthingsagenda.techtarget.
com/definition/microcontroller.

[10] HubSpire. What Is a CPU, and What Is Its Function? [Internet]. [date unknown].
[cited 2022 May 10]. Available from:, url = https://www.hubspire.com/what-is-a-
cpu-and-what-is-its-function/, .

[11] Wardynski DJ. What is a Microprocessor and How Does it Work? 2019 Oct 10
[cited 2022 Apr 15]. In: Brainspire [Blog on internet]. Brainspire: DJ Wardinsky;
2019-. Available from:, . URL https://www.brainspire.com/blog/
what-is-a-microprocessor-and-how-does-it-work.

42

https://www.fortunebusinessinsights.com/industry-reports/smart-door-lock-market-100215
https://www.fortunebusinessinsights.com/industry-reports/smart-door-lock-market-100215
https://futurelab.assaabloy.com/en/wp-content/uploads/sites/2/2016/10/Smart-Home-Security-Report-2016.pdf
https://futurelab.assaabloy.com/en/wp-content/uploads/sites/2/2016/10/Smart-Home-Security-Report-2016.pdf
https://futurelab.assaabloy.com/en/wp-content/uploads/sites/2/2016/10/Smart-Home-Security-Report-2016.pdf
https://swedlock.com/se/
https://swedlock.com/se/swedlock-pro/
https://swedlock.com/se/swedlock-pro/
https://www.yalehome.com/se/sv
https://www.yalehome.com/se/sv
https://idlock.se/
https://idlock.se/
https://www.ilockey.com/how-do-smart-locks-get-power/
https://www.ilockey.com/how-do-smart-locks-get-power/
https://docs.rs-online.com/be54/0900766b80db8930.pdf
https://docs.rs-online.com/be54/0900766b80db8930.pdf
https://internetofthingsagenda.techtarget.com/definition/microcontroller
https://internetofthingsagenda.techtarget.com/definition/microcontroller
https://www.brainspire.com/blog/what-is-a-microprocessor-and-how-does-it-work
https://www.brainspire.com/blog/what-is-a-microprocessor-and-how-does-it-work

[12] Tigadi V. All about FPGAs. 2006 Mar 21 [cited 2022 Mar 7]. In: EDN [Blog
on internet]. EDN: Vishwanath Tigadi, 2006-. Available from:. URL https:
//www.edn.com/all-about-fpgas/.

[13] Analog Devices. A Beginner’s Guide to Digital Signal Processing
(DSP)[Internet]. Analog Devices [date unknown]. [cited 2022 Mar 7].
Available from:. URL https://www.analog.com/en/design-
center/landing-pages/001/beginners-guide-to-dsp.html.

[14] Electronics notes. What is an ASIC: application specific integrated ciruit
[Internet]. Electronics notes [date unknown]. [cited 2022 Mar 7. available
from:. URL https://www.electronics-notes.com/articles/
electronic_components/programmable-logic/what-is-an-
asic-application-specific-integrated-circuit.php.

[15] Best Microcontroller Projects. Which PIC Programmer Do You Need? [Inter-
net]. Best Microcontroller Projects [date unknown]. [cited 2022 Mar 7]. Avail-
able from:. URL https://www.best-microcontroller-projects.
com/pic-programmer.html.

[16] Bakhtouchi A, Rahmouni R. A Tree Decision Based Approach for Select-
ing Software Development Methodology. In: IEEE. 2018 International Confer-
ence on Smart Communications in Network Technologies (SaCoNeT). 27-31
Oct 2018, El Oued, Algeria. Institute of Electrical and Electronics Engineers;
2018. 211-216. [cited 2022 Mar 2] Available from:. doi: 10.1109/SACONET.
2018.8585699. URL https://ieeexplore.ieee.org/abstract/
document/8585699/citations?tabFilter=papers#citations.

[17] Khan A, Qurashi R, Khan U. A Comprehensive Study of Commonly Prac-
ticed Heavy and Light Weight Software Methodologies. IJCSI. 2011; Vol
8; Issue 4, No 2. 441-50. [cited 2022 Mar 7]. Available from:, 2011. URL
https://www.researchgate.net/publication/220487062_
A_Comprehensive_Study_of_Commonly_Practiced_Heavy_
Light_Weight_Software_Methodologies.

[18] Bhalerao S, Ingle M. Generalized Framework for Agile Software Development
Process. IJRTE. 2009, Vol 2, No 4: 232-4. [cited 2022 Mar 7]. Available
from:. URL https://www.researchgate.net/publication/
228723817_Generalized_Framework_for_Agile_Software_
Development_Process.

[19] Capers Jones and Associates Llc. Evaluating Ten Software Development Method-
ologies. 2011.

[20] Martin K, Hoffman B. An open source approach to developing software in a small
organization. IEEE Software. 2007; Vol 24. Issue 1. 46-53. [cited 2022 Mar 12].
Available from: . doi: 10.1109/MS.2007.5. URL https://ieeexplore.
ieee.org/document/4052552.

43

https://www.edn.com/all-about-fpgas/
https://www.edn.com/all-about-fpgas/
https://www.analog.com/en/design-center/landing-pages/001/beginners-guide-to-dsp.html
https://www.analog.com/en/design-center/landing-pages/001/beginners-guide-to-dsp.html
https://www.electronics-notes.com/articles/electronic_components/programmable-logic/what-is-an-asic-application-specific-integrated-circuit.php
https://www.electronics-notes.com/articles/electronic_components/programmable-logic/what-is-an-asic-application-specific-integrated-circuit.php
https://www.electronics-notes.com/articles/electronic_components/programmable-logic/what-is-an-asic-application-specific-integrated-circuit.php
https://www.best-microcontroller-projects.com/pic-programmer.html
https://www.best-microcontroller-projects.com/pic-programmer.html
https://ieeexplore.ieee.org/abstract/document/8585699/citations?tabFilter=papers#citations
https://ieeexplore.ieee.org/abstract/document/8585699/citations?tabFilter=papers#citations
https://www.researchgate.net/publication/220487062_A_Comprehensive_Study_of_Commonly_Practiced_Heavy_Light_Weight_Software_Methodologies
https://www.researchgate.net/publication/220487062_A_Comprehensive_Study_of_Commonly_Practiced_Heavy_Light_Weight_Software_Methodologies
https://www.researchgate.net/publication/220487062_A_Comprehensive_Study_of_Commonly_Practiced_Heavy_Light_Weight_Software_Methodologies
https://www.researchgate.net/publication/228723817_Generalized_Framework_for_Agile_Software_Development_Process
https://www.researchgate.net/publication/228723817_Generalized_Framework_for_Agile_Software_Development_Process
https://www.researchgate.net/publication/228723817_Generalized_Framework_for_Agile_Software_Development_Process
https://ieeexplore.ieee.org/document/4052552
https://ieeexplore.ieee.org/document/4052552

[21] Axelson J. Serial Port Complete [Internet] Second Edition. Madison Wis-
consin: Lakeview Research LLC; 2007. [cited 2022 Mar 9]. Available
from:. URL https://gacbe.ac.in/images/E%20books/Axelson%
20-%20Serial%20Port%20Complete%20(2007)b.pdf.

[22] Tutorialspoint. Digital Communication - Quick Guide [Internet] Tuto-
rialspoint [date unknown]. [cited 2022 Mar 7]. Available from:. URL
https://www.tutorialspoint.com/digital_communication/
digital_communication_quick_guide.htm.

[23] Circuit Basics. Basics of the SPI Communication Protocol [Internet]. Cir-
cuit Basics: Scott Campbell [date unknown]. [cited 2022 Apr 13]. Available
from:. URL https://www.circuitbasics.com/basics-of-the-
spi-communication-protocol.

[24] Computer Notes. How Does a Single Bit Error Differs From Burst Er-
ror [Internet]. Computer Notes; Dinesh Thakur [date unknown]. [cited
2022 Apr 17]. Available from:. URL https://ecomputernotes.
com/computernetworkingnotes/communication-networks/
single-bit-error-differs-from-burst-error.

[25] General Note. Types of errors in data communication - Single-bit error & Burst
error [Internet]. General Note [date unknown]. [cited 2022 Apr 17]. Avail-
able from:. URL http://generalnote.com/Computer-Network/
Error-Detection-and-Correction/Types-of-errors.php.

[26] Federal Aviation Administration. Selection of Cyclic Redundancy Code and
Checksum Algorithms to Ensure Critical Data Integrity [Internet]. Springfield,
Virginia: Federal Aviation Administration; 2015. [cited 2022 Apr 9]. Available
from:. URL https://www.faa.gov/aircraft/air_cert/design_
approvals/air_software/media/TC-14-49.pdf.

[27] Fenwick P, Checksums and error control [Internet]. Auckland: Pe-
ter M Fenwick; 2006. [cited 2022 Mar 7]. Available from:. URL
https://www.cs.auckland.ac.nz/courses/compsci314s1c/
lectures/Checksums.pdf.

[28] Houghton A. The Engineer’s Error Coding Handbook [Internet]. Springer,
Boston, MA; 1997. 7-11. [cited 2022 Apr 12]. Available from:. doi: 10.1007/978-
1-4613-0447-0 2. URL https://link.springer.com/chapter/10.
1007/978-1-4613-0447-0_2.

[29] Oxford Learner’s Dictionaries. checksum [Internet]. Oxford Learner’s
Dictionaries [date unknown]. [cited 2022 May 25]. Available from:.
URL https://www.oxfordlearnersdictionaries.com/
definition/american_english/checksum.

[30] Stone J, Greenwald M, Partride C, Hughes J. Performance of check-
sums and CRCs over real data. IEEE ACM Trans. Netw. 1998; Vol

44

https://gacbe.ac.in/images/E%20books/Axelson%20-%20Serial%20Port%20Complete%20(2007)b.pdf
https://gacbe.ac.in/images/E%20books/Axelson%20-%20Serial%20Port%20Complete%20(2007)b.pdf
https://www.tutorialspoint.com/digital_communication/digital_communication_quick_guide.htm
https://www.tutorialspoint.com/digital_communication/digital_communication_quick_guide.htm
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol
https://ecomputernotes.com/computernetworkingnotes/communication-networks/single-bit-error-differs-from-burst-error
https://ecomputernotes.com/computernetworkingnotes/communication-networks/single-bit-error-differs-from-burst-error
https://ecomputernotes.com/computernetworkingnotes/communication-networks/single-bit-error-differs-from-burst-error
http://generalnote.com/Computer-Network/Error-Detection-and-Correction/Types-of-errors.php
http://generalnote.com/Computer-Network/Error-Detection-and-Correction/Types-of-errors.php
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/TC-14-49.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/TC-14-49.pdf
https://www.cs.auckland.ac.nz/courses/compsci314s1c/lectures/Checksums.pdf
https://www.cs.auckland.ac.nz/courses/compsci314s1c/lectures/Checksums.pdf
https://link.springer.com/chapter/10.1007/978-1-4613-0447-0_2
https://link.springer.com/chapter/10.1007/978-1-4613-0447-0_2
https://www.oxfordlearnersdictionaries.com/definition/american_english/checksum
https://www.oxfordlearnersdictionaries.com/definition/american_english/checksum

6. Issue 5. 529-43. [cited 2022 Apr 16]. Available from:. doi: 10.
1109/90.731187. URL https://ieeexplore.ieee.org/abstract/
document/731187/authors#authors.

[31] How-To Geek. What Is a Checksum (and Why Should You Care)? [Internet].
How-To Geek: Chris Hoffman; 2019. [updated 2019 Sep 30; cited 2022 Apr 16].
Available from:. URL https://www.howtogeek.com/363735/what-
is-a-checksum-and-why-should-you-care/.

[32] Wikipedia [Internet]. Checksum. [revised 2022 Mar 15; cited 2022 Apr 16].
Available from:. URL https://en.wikipedia.org/wiki/Checksum.

[33] Peterson W, Brown D. Cyclic Codes for Error Detection. Proc. IRE. 1961;
Vol 49. Issue 1. 228-35. [cited 2022 Apr 3]. Available from:. doi: 10.
1109/JRPROC.1961.287814. URL https://ieeexplore.ieee.org/
document/4066263/authors#authors.

[34] Rocksoft. A PAINLESS GUIDE TO CRC ERROR DETECTION ALGO-
RITHMS [Internet]. Adelaide: Ross N Williams; 1993. [cited 2022 Apr 7].
Available from:. URL https://archive.org/stream/PainlessCRC/
crc_v3.txt.

[35] Koopman P, Chakravarty T. Cyclic redundancy code (CRC) polynomial selection
for embedded networks. In: International Conference on Dependable Systems
and Networks. Jun-Jul 28-1, 2004. Florence, Italy: IEEE. 145-54. [cited 2022
Apr 11]. Available from:. doi: 10.1109/DSN.2004.1311885. URL https://
ieeexplore.ieee.org/document/1311885.

[36] IBM. Master/Slave Model [Internet]. IBM; 2022. [cited 2022 Apr 11]. Avail-
able from:. URL https://www.ibm.com/docs/en/aix/7.1?topic=
models-masterslave-model.

[37] Baldo L, Brenner L, Fernandes L, Fernandes P, Sales A. Performance Models
For Master/Slave Parallel Programs. ENTCS. 2005; Vol 128. Issue 4. 101-21.
[cited 2022 Mar 28]. Available from:. doi: 10.1016/j.entcs.2005.01.015. URL
https://www.researchgate.net/publication/222376226_
Performance_Models_For_MasterSlave_Parallel_Programs.

[38] Wikipedia [Internet]. Duplex (telecommunications). [revised 2022 Mar 18; cited
2022 Apr 10]. Available from:. URL https://en.wikipedia.org/
wiki/Duplex_(telecommunications).

[39] Loshin P. What is full-duplex?. 2021 Oct [cited 2022 Apr 10]. In:
Techtarget [Blog on internet]. Techtarget: Peter Loshin; 2021-. Available
from. URL https://www.techtarget.com/searchnetworking/
definition/full-duplex.

[40] Network Encyclopedia. Full-duplex [Internet]. Network Encyclopedia [date
unknown]. [cited 2022 Apr 10]. Available from:. URL https://
networkencyclopedia.com/full-duplex/.

45

https://ieeexplore.ieee.org/abstract/document/731187/authors#authors
https://ieeexplore.ieee.org/abstract/document/731187/authors#authors
https://www.howtogeek.com/363735/what-is-a-checksum-and-why-should-you-care/
https://www.howtogeek.com/363735/what-is-a-checksum-and-why-should-you-care/
https://en.wikipedia.org/wiki/Checksum
https://ieeexplore.ieee.org/document/4066263/authors#authors
https://ieeexplore.ieee.org/document/4066263/authors#authors
https://archive.org/stream/PainlessCRC/crc_v3.txt
https://archive.org/stream/PainlessCRC/crc_v3.txt
https://ieeexplore.ieee.org/document/1311885
https://ieeexplore.ieee.org/document/1311885
https://www.ibm.com/docs/en/aix/7.1?topic=models-masterslave-model
https://www.ibm.com/docs/en/aix/7.1?topic=models-masterslave-model
https://www.researchgate.net/publication/222376226_Performance_Models_For_MasterSlave_Parallel_Programs
https://www.researchgate.net/publication/222376226_Performance_Models_For_MasterSlave_Parallel_Programs
https://en.wikipedia.org/wiki/Duplex_(telecommunications)
https://en.wikipedia.org/wiki/Duplex_(telecommunications)
https://www.techtarget.com/searchnetworking/definition/full-duplex
https://www.techtarget.com/searchnetworking/definition/full-duplex
https://networkencyclopedia.com/full-duplex/
https://networkencyclopedia.com/full-duplex/

[41] GeeksforGeeks. Difference between Simplex, Half duplex and Full Duplex Trans-
mission Modes [Internet]. GeeksforGeeks: Maneesh Kumar Singh; 2020. [cited
2022 Apr 10]. Available from:. URL https://www.geeksforgeeks.
org/difference-between-simplex-half-duplex-and-full-
duplex-transmission-modes/#:˜:text=Simplex%20mode%
20is%20a%20uni,can’t%20receive%20the%20data.

[42] Shetti P, Mangave A. DC MOTOR SPEED CONTROL WITH FEEDBACK
MONITOR BASED ON C# APPLICATION . IJRET. 2014; Vol 3. Issue 3. 398-
401. [cited 2022 May 1]. Available from:. URL http://www.ijret.org.

[43] Liyanage U. Speech Recognition for MAV [project on the Internet]. University of
Sunderland; 2016 [cited 2022 Mar 7]. Available from:. URL https://www.
academia.edu/31299718/Speech_Recognition_for_MAV.

[44] WEMOS. D1 mini Lite documentation [Internet]. WEMOS [date unknown].
[cited 2022 Mar 7]. Available from:. URL https://www.wemos.cc/en/
latest/d1/d1_mini_lite.html.

[45] Northern Software. NSDSP-1-3V3 PIC Programmer [Internet]. Northern Soft-
ware [date unknown]. [cited 2022 Mar 7]. Available from:. URL https:
//www.northernsoftware.com/nsdsp/p3v.htm.

[46] Onsemi. MC74HC595A 8-Bit Serial-Input/Serial or Parallel-Output Shift Reg-
ister with Latched 3-State Outputs datasheet [Internet]. Onsemi; 2021. [cited
2022 Mar 7]. Available from:, . URL https://www.onsemi.com/pdf/
datasheet/mc74hc595a-d.pdf.

[47] NXP. NX3L4051-Q100 Single low-ohmic 8-channel analog switch datasheet [In-
ternet]. NXP; 2012. [cited 2022 Feb 22]. Available from:, . URL https:
//www.nxp.com/docs/en/data-sheet/NX3L4051_Q100.pdf.

[48] Wikipedia [Internet]. Analog-to-digital converter. [revised 2022 Feb 23; cited
2022 Mar 7]. Available from:. URL https://en.wikipedia.org/wiki/
Analog-to-digital_converter.

[49] Texas Instruments. 5-V/3.3-V SINGLE-CHANNEL 2:1 MULTIPLEXER/DE-
MULTIPLEXER datasheet [Internet]. Texas Instruments; 2005. [cited 2022 Feb
17]. Available from:. URL https://www.ti.com/lit/ds/symlink/
ts5a4624.pdf?ts=1652191229388&ref_url=https%253A%
252F%252Fwww.google.com%252F.

[50] Texas Instruments. INAx181 Bidirectional, Low- and High-Side Voltage Output,
Current-Sense Amplifiers datasheet [Internet]. Texas Instruments; 2017. [cited
2022 Mar 4]. Available from: . URL https://www.ti.com/document-
viewer/INA4181/datasheet/device-images-dv#dv.

[51] Ogala J, Ojie D. COMPARATIVE ANALYSIS OF C, C++, C# AND JAVA
PROGRAMMINGLANGUAGES. GSJ. 2020; Vol 8; Issue 5. [cited 2022 Mar

46

https://www.geeksforgeeks.org/difference-between-simplex-half-duplex-and-full-duplex-transmission-modes/#:~:text=Simplex%20mode%20is%20a%20uni,can't%20receive%20the%20data.
https://www.geeksforgeeks.org/difference-between-simplex-half-duplex-and-full-duplex-transmission-modes/#:~:text=Simplex%20mode%20is%20a%20uni,can't%20receive%20the%20data.
https://www.geeksforgeeks.org/difference-between-simplex-half-duplex-and-full-duplex-transmission-modes/#:~:text=Simplex%20mode%20is%20a%20uni,can't%20receive%20the%20data.
https://www.geeksforgeeks.org/difference-between-simplex-half-duplex-and-full-duplex-transmission-modes/#:~:text=Simplex%20mode%20is%20a%20uni,can't%20receive%20the%20data.
http://www.ijret.org
https://www.academia.edu/31299718/Speech_Recognition_for_MAV
https://www.academia.edu/31299718/Speech_Recognition_for_MAV
https://www.wemos.cc/en/latest/d1/d1_mini_lite.html
https://www.wemos.cc/en/latest/d1/d1_mini_lite.html
https://www.northernsoftware.com/nsdsp/p3v.htm
https://www.northernsoftware.com/nsdsp/p3v.htm
https://www.onsemi.com/pdf/datasheet/mc74hc595a-d.pdf
https://www.onsemi.com/pdf/datasheet/mc74hc595a-d.pdf
https://www.nxp.com/docs/en/data-sheet/NX3L4051_Q100.pdf
https://www.nxp.com/docs/en/data-sheet/NX3L4051_Q100.pdf
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://www.ti.com/lit/ds/symlink/ts5a4624.pdf?ts=1652191229388&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/ts5a4624.pdf?ts=1652191229388&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/ts5a4624.pdf?ts=1652191229388&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/document-viewer/INA4181/datasheet/device-images-dv#dv
https://www.ti.com/document-viewer/INA4181/datasheet/device-images-dv#dv

3]. Available from:. URL https://www.globalscientificjournal.
com/researchpaper/WEB_BASED_ACADEMIC_ADVISING_SYSTEM_
FOR_NIGERIAN_UNIVERSITIES.pdf.

[52] Team Circuito, EVERYTHING YOU NEED TO KNOW ABOUT ARDUINO
CODE. 2018 Mar 11 [cited 2022 Mar 1]. In: Circuito [Blog on the Inter-
net]. Circuito: Team Circuito; 2018-. Available from:. URL https://www.
circuito.io/blog/arduino-code/. [Accessed: 2022-03-01].

[53] Northern Software. Software for NSDSP [Internet]. Northern Software [date
unknown]. [cited 2022 Feb 17]. Available from:. URL https://www.
northernsoftware.com/nsdsp/soft/.

[54] Wikipedia [Internet]. Intel HEX. [revised 2022 Feb 6; cited 2022 Feb 25]. Avail-
able from:. URL https://en.wikipedia.org/wiki/Intel_HEX.

[55] Northern Software. NSZ Files [Internet]. Northern Software [date un-
known]. [cited 2022 Feb 15]. Available from:. URL https://www.
northernsoftware.com/nsdsp/soft/nsz.htm.

47

https://www.globalscientificjournal.com/researchpaper/WEB_BASED_ACADEMIC_ADVISING_SYSTEM_FOR_NIGERIAN_UNIVERSITIES.pdf
https://www.globalscientificjournal.com/researchpaper/WEB_BASED_ACADEMIC_ADVISING_SYSTEM_FOR_NIGERIAN_UNIVERSITIES.pdf
https://www.globalscientificjournal.com/researchpaper/WEB_BASED_ACADEMIC_ADVISING_SYSTEM_FOR_NIGERIAN_UNIVERSITIES.pdf
https://www.circuito.io/blog/arduino-code/
https://www.circuito.io/blog/arduino-code/
https://www.northernsoftware.com/nsdsp/soft/
https://www.northernsoftware.com/nsdsp/soft/
https://en.wikipedia.org/wiki/Intel_HEX
https://www.northernsoftware.com/nsdsp/soft/nsz.htm
https://www.northernsoftware.com/nsdsp/soft/nsz.htm

	Acknowledgments
	Abstract
	Sammanfattning
	Acronyms
	Introduction
	Swedlock Pro
	Installation Cycle
	Purpose
	Problem Statement
	The Hardware Platform
	Routines and Functions
	Two-way Communication
	Software Design
	Compiling Test Data

	Restrictions
	Requirements Specification

	Background
	Embedded Systems Platforms
	Software Development Methodologies
	Digital Communication
	Parallel/Serial Communication
	Error detection
	Master/Slave Model
	Duplex

	Similar projects

	The Development System Setup
	Materials Used
	The Hardware Platform
	The Software Platform
	Other Materials

	The Development
	Hardware Component Investigation
	Microcontroller Control Functions
	Two-way Communication
	The Designed Software
	Production Test Compilation

	The Test and Verification of the Solution

	Results Achieved
	Hardware Verification
	Control Functions
	GUI
	Production Settings
	Installation Cycle
	Production Tests
	Results

	The Efficiency of the Solution
	Comparison with existing Solutions
	Scalability
	Reliability
	Efficiency
	Societal Aspects

	Conclusions
	References

