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ABSTRACT In an application-layer distributed denial of service (App-DDoS) attack, zombie computers
bring down the victim server with valid requests. Intrusion detection systems (IDS) cannot identify these
requests since they have legal forms of standard TCP connections. Researchers have suggested several
techniques for detecting App-DDoS traffic. There is, however, no clear distinction between legitimate
and attack traffic. In this paper, we go a step further and propose a Machine Learning (ML) solution by
combining the Radial Basis Function (RBF) neural network with the cuckoo search algorithm to detect
App-DDoS traffic. We begin by collecting training data and cleaning them, then applying data normalizing
and finding an optimal subset of features using the Genetic Algorithm (GA). Next, an RBF neural network is
trained by the optimal subset of features and the optimizer algorithm of cuckoo search. Finally, we compare
our proposed technique to the well-known k-nearest neighbor (k-NN), Bootstrap Aggregation (Bagging),
Support Vector Machine (SVM), Multi-layer Perceptron) MLP, and (Recurrent Neural Network) RNN
methods. Our technique outperforms previous standard and well-known ML techniques as it has the lowest
error rate according to error metrics. Moreover, according to standard performance metrics, the results of
the experiments demonstrate that our proposed technique detects App-DDoS traffic more accurately than
previous techniques.

INDEX TERMS Application layer DDoS, machine learning, radial basis function, cuckoo search algorithm,
genetic algorithm.

I. INTRODUCTION
In application-layer DDoS attacks (App-DDoS), the attackers
send legitimate packets toward the victim server to bring
down the server [5], [11]. As the malicious packets mimic
the behavior of legitimate users and contain the genuine
source IP addresses, neither the victim server nor IDS
(Intrusion Detection System) can distinguish the packet of
attackers from legitimate users [5], [11]. The main goal of
DDoS attackers regardless of their types is to force victim
servers to respond so slowly as to be unusable or shut
down completely. To achieve this goal, they overwhelm
the bottleneck resources of the victim server. The desired
bottleneck resources for application-layer DDoS attacks
are TCP/IP stacks, CPU cycles, memory, I/O bandwidth,
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and disk/database bandwidth. In App-DDoS attacks, the
adversary overwhelms the bottleneck resources via legitimate
requests. To launch such an attack, every bot machine that
wants to participate in the attack establishes a TCP connection
with the victim server, which requires a genuine IP address.

The main aim of a defense technique against App-
DDoS attacks is to detect and distinguish attack traffic
from legitimate ones. This issue is difficult as attackers
purposely fabricate App-DDoS traffic to look like legitimate
traffic. On the other hand, professional attackers continuously
change their toolkits and develop more sophisticated App-
DDoS traffic; hence detecting attack traffic becomes more
difficult. However, once the attack traffic is detected, the
victim server can block any traffic coming from attack
sources [5], [11].

Several classic, heuristic, and more recently machine-
learning (ML) based techniques have been proposed to
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detect and distinguish App-DDoS traffic from legitimate
traffic during the last decade. Previous classic and heuristic
techniques, which we call traditional techniques, detect App-
DDoS traffic by rules (e.g., statistical, challenge/response,
and time series) programmed by traffic engineers. Traditional
approaches have not achieved much to catch App-DDoS
traffic, as they suffer from low accuracy due to the dynamic
and evolving natures of App-DDoS attacks. Some well-
known traditional techniques are reviewed in Section II.
Recently, academics and industries are exploring artificial

intelligence techniques, especially ML techniques to detect
App-DDoS traffic. ML techniques such as KNN, SVM,
random forest, logistic regression, and Naïve Bayesian
can accurately classify binary data (the data belonging to
class YES or class NO) if we have a large volume of
labeled samples (the samples with labels YES or NO). The
mechanism is that human experts select the classification
features. In deep-learning (DL) approaches such as CNN
and RNN, even feature selection can be made by machine
without human intervention through a series of nonlinear
processing layers. Next, an ML model is customized and
trained with the labeled samples via the selected features. The
trained ML model is used to predict the class of upcoming
data. Therefore, ML techniques can be a powerful tool for
detecting App-DDoS traffic. Section II discusses some recent
ML techniques that detect App-DDoS traffic. Section II
discusses some recent ML techniques that detect App-DDoS
traffic.

This paper proposes a novel technique based on machine
learning to detect the traffic of App-DDoS attacks. A Radial
Basis Function (RBF) neural network is used at the heart
of the technique. The Cuckoo Search optimizer Algo-
rithm (CSA) is applied to the RBF network to enhance the
network power detection. Through the Genetic Algorithm
(GA), the most valuable features of network traffic that have
the main role in detecting App-DDoS traffic are determined
and applied to the RBF network to train the network.
The trained RBF significantly detects and distinguishes the
attack traffic from legitimate ones. Experimental results
show that our proposed technique improves accuracy in
detection on average by 3% and 6% compared to Bootstrap
Aggregation (Bagging) technique and k-nearest neighbor
(KNN), respectively. The proposed technique also performs
better than well-known machine learning techniques such
as support vector machine (SVM), multi-layer perceptron
(MLP), and recurrent neural network (RNN).

The main contributions of the proposed technique are as
follows.

1) Utilizing Radial Basis Function (RBF) neural network
to detect App-DDoS traffic from legitimate traffic.

2) Utilizing the Genetic Algorithm (GA) to distinguish the
most valuable features of the dataset in order to increase
the accuracy of attack detection. Utilizing Radial Basis
Function (RBF) neural network to detect App-DDoS
traffic from legitimate traffic.

3) Applying the Cuckoo search algorithm (CSA) to RBF
neural network to better train the network.

4) Experimental results show that the combination of CSA
+ GA + RBF outperforms other well-known machine
learning-based techniques such as KNN, Bagging,
SVM, RNN, and MLP.

The rest of the paper is organized as follows:
Sections II, III, IV and V present the related work, the
proposed technique, experimental results and the conclusion,
respectively.

II. RELATED WORK
Several App-DDoS traffic detection techniques have been
proposed in the last decade. In this section, a few traditional
techniques are discussed first, then the techniques based on
machine learning and deep learning are discussed.

A. TRADITIONAL TECHNIQUES
CAPTCHA (Completely Automated Public Turing test to
tell Computers and Humans Apart) is an elegant mechanism
to separate human-based users from automated software
tools [9], [25]. CAPTCHA is the most trusted technique
against App-DDoS attacks; however, it suffers various
challenges such as annoying users, technical difficulties with
some browsers, not being robust against image recognition
techniques, and third-party users.

InWhitelisting Technique [19], a list of source IP addresses
called very important IP addresses (VIPs) is prepared before
the attack. When the victim server is under an App-DDoS
attack, priority is given to traffic that belongs to the VIP list.
The main challenges with this technique are (1) it is not user
transparent, (2) it has the problem with mobile users (3) The
zombie machines and royal clients that have resided behind a
NAT (network address translator) have the same privilege to
access the server.

Trust Management Helmet (TMH) [20] is a mechanism
that distinguishes legitimate users from malicious users
using trust. During an App-DDoS attack, the priority for
establishing sessions with the victim server is given to
users with higher trust values instead of identifying all bot
machines. TMH depends on the browser’s cookie; however,
in many companies and institutes, the cookies are deleted due
to privacy and security issues.

In the ConnectionScore technique [4], every session is
scored based on its history and statistical analysis that has
been done during normal connection. Those sessions that
take lower scores are blocked, and bottleneck resources are
retaken from them. However, the computational overhead
imposed on the server can be large during the attack as it
measures a proper score for every session.

Authors in [10] proposed a probability-based detection
mechanism based on the central limit theorem and the
windowing method. Through the probabilistic model, [10]
trains an engine offline using distributions of six TCP flags
of incoming SYN packets of the DARPA dataset. The trained
engine detects malicious traffic, mimicking normal packets
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with spoofed information in the online mode. [10] shows
that their probabilistic technique is better than the entropy-
based strategy in terms of false-negative rate (FNR) in
various attack circumstances. The main problem with the
technique is that the distribution of six TCP flags is not a
robust criterion for App-DDoS traffic detection. Due to this
limitation, the authors only considered the SYN flood attack
in their experiments.

B. MACHINE-LEARNING BASED TECHNIQUES
Authors in [21] use machine learning and deep learning
to identify transport and application layer DDoS attacks
in software-defined networks (SDNs). [21] includes four
modules: Flow collector, preprocessing, detection, and flow
Manager. The flow collector module gathers the data packets
from the network, creates the flows, and then forwards them
to the preprocessing module. In the preprocessing, data is
cleaned. The detection module utilizes a trained model based
on various machine learning and deep learning techniques
to classify the input as suspicious or benign. The model
is trained based on KNN, SVM, RF (Random Forest),
MLP, CNN (Convolutional Neural Network), GRU (Gated
Recurrent Units), and LSTM (Long Short-Term Memory)
classifiers. Two recent security datasets, CICDoS2017, and
CICDoS2019 are used to train the model. Finally, the flow
manager module informs the controller about the suspicious
traffic.

Authors in [15] trained a model based on the decision
tree (DT) approach for an imbalanced dataset in which the
normal traffic dominates attack traffic. Most classification
techniques are normally biased toward themajority class (i.e.,
normal traffic). [15] proposed an ensemble-based method by
using K-Means, RUSBoost, and DT approaches to mitigate
the class imbalance problem. The approach selected DT as
the best classifier after optimizing the hyper-parameters in
terms of accuracy, fast training time, and improved average
prediction rate.

Feng et al. [8] propose a reinforcement-learning-based
model to detect and mitigate App-DDoS attacks. The model
is continuously trained with various metrics related to the
server’s load, clients’ dynamic behaviors, and the victim’s
network load. The model utilizes the Markov decision
process to construct the attack classification model. The
reward function of the reinforcement-learning model is a
multi-objective function to guide a reinforcement-learning
agent to learn the most suitable action in mitigating App-
DDoS attacks.

Banerjee et al. [3] propose two modules that work sequen-
tially to detect and mitigate DDoS attacks. The first module,
called the Signature IDS, uses machine learning algorithms
like Naive Bayes, KNN, and K-Means to classify incoming
packets as normal or anomalous. Hence, all the possible
intruders in the incoming traffic are predicted beforehand.
Among various ML techniques, the one giving the best
possible outcome is implemented in the Signature IDS. The

second module performs a three-way handshake to identify
the exact host, which is an intruder.

Authors in [16] propose a DDoS attack detection architec-
ture that integrates Bi-Directional Long Short-Term Memory
(BI-LSTM), a Gaussian Mixture Model (GMM), and incre-
mental learning. Unknown traffic is captured by the GMM
unit and then is labeled by data engineers for discrimination.
The labeled traffic is then fed back to the BI-LSTM and
the GMM for incremental learning. The Bi-LSTM is used to
discriminate malicious traffic from legitimate ones.

Alghazzawi et al. [2] investigate a hybrid model of CNN
and Bi-LSTM for DDoS attacks classification. The chi-
squared (x2) is used to identify highly related features. Next,
a CNN network is used to extract the high-rated features.
These features are fed to the Bi-LSTM model to distinguish
attack packets from normal packets.

Zeeshan et al. [23] propose a Protocol Based Deep Intru-
sion Detection (PB-DID) architecture in which a data-set
of packets from IoT traffic is created based on flow and
Transmission Control Protocol (TCP). Next, an LSTM-based
unsupervised deep learning model is utilized to detect DDoS
attack traffic. The model is trained on all the data available in
two famous benchmarks, namely UNSW-NB15 and BotIoT
data sets, to cover the maximum possible packet types. In this
model, the number of features for training is reduced to
almost half.

A hybrid model of random forest (RF) and XGBoost is
presented in [12] to predict the DDoS attack traffic. The data
of the benchmark is pre-processed to handle irrelevant data.
Next, features are extracted from the data, and data is labeled.
The hybrid model is trained with the extracted features and
labeled data.

Table 1 summarize and compare previous machine-
learning based techniques via various parameters. In the table,
‘+’ operator is used when two (or more) techniques are used
in parallel, and ‘→’ is used when two (or more) techniques
are used in series (output of a technique becomes the input of
the next one).

III. THE PROPOSED TECHNIQUE
The proposed algorithm includes data gathering, data
cleaning, data normalization, feature selection based on
genetic algorithm (GA), and training of the Radial Basis
Function (RBF) neural network based on the optimizer
algorithm of cuckoo search. Fig. 1 shows the general
flowchart of the proposed technique. The details of each step
are explained as follows.

A. DATA GATHERING
The data is gathered via NSL-KDD dataset [17]. The NSL-
KDD dataset is derived from the KDD Cup 99 dataset, one
of the most available datasets for the research community.
The NSL-KDD dataset includes legitimate traffic (48%),
DDoS traffic (35%), Probe attack (10.55%), U2R attack
(0.32%), and R2L (6.13%). Each dataset record is made up
of 41 qualitative and quantitative features.
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TABLE 1. Summarizing and comparing previous machine-learning based techniques.

In our study, we excluded all categories except DoS and
legitimate. After excluding all other types of attacks, our
dataset has 57% normal traffic and 43% DDoS traffic. The
dataset was then reduced to a small number of 3495 samples
which keeps the normal traffic rates and Dos traffic
unchanged (i.e., 1992 samples are normal and 1503 samples
are DoS traffic). We utilized 2796 samples for the training
set and 699 samples for the testing set, which constitute
80% and 20%, respectively. Finally, 233 extra samples are
randomly selected in the dataset for the holdout dataset while
keeping the rate of normal data and attack data unchanged.

The holdout dataset is used to check the overfitting problem
of the model.

B. DATA CLEANING
In many real-world data mining applications, even with large
amounts of data and adequate storage space, some data may
be lost in existing samples. However, the issue arises when
large data sets cannot ignore individual values due to their
efficacy. Organizations have access to vast volumes of data
that affect their business decisions. The data gathered from
multiple sources is dirty, which will impact the accuracy of
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FIGURE 1. The flowchart of the proposed technique.

the prediction result. Data cleaning improves data quality,
allowing organizations to ensure that their data is suitable for
analysis. One solution is to use fixed values to replace and
clear the lost data [13]. In this work, the average value of
each feature’s lost values is utilized and substituted inmissing
samples.

C. DATA NORMALIZATION
Larger values have a higher influence on the model due to the
non-uniform range of features and their various units, but this
does not always imply that they are more significant. Feature
normalization is a technique for keeping all values within
predefined ranges. However, choosing the right normalizing
technique is crucial because applying normalization to the
input might affect the data’s structure. The goal of the feature
normalization technique is to compensate for the impacts
of mismatch in the environment [1]. In this work, data
normalization is done in order to overcome this problem. The
data of every feature are adjusted to a range of [−1,1] using
linear normalization [22].

X = 2× (x − min(x))/(max(x)− min(x))− 1 (1)

where min(x) is the minimum of the input x, max(x) is the
maximum of the input x and X is the normalized x.

D. FEATURE SELECTION
Feature selection is a fundamental topic in ML that signifi-
cantly influences the model’s performance. The data features
used to train the ML models significantly impact the results

that may be gotten. Model performance can be harmed by
features that are irrelevant or just partially relevant [7]. Since
CSA is a nature-inspired algorithm, we tend to use also
a nature-inspired algorithm like Genetic Algorithms (GAs)
for feature selection. GA is a stochastic function in natural
genetics and evolution, a heuristic optimizationmethod based
on natural evolution’s rules. GA finds the best answer
after a series of repeated calculations based on Darwin’s
‘‘Survival of the Fittest’’ theory. We use GA for feature
selection for the following reasons: (1) GAs commonly
outperform conventional feature selection algorithms [24].
(2) For the mortality prediction problem, the GA-selected
feature subset for one classifier can be used for others while
still obtaining high performance [24]. (3) GAs are capable of
managing data sets with a variety of features [24]. (4) GA
achieves comparable or even superior predictive outcomes
with far fewer features, saving time and cost, making it more
advantageous [18], [24]. (5) GAs do not require specific
information about the problem under study [18].

Our procedure of feature selection based on GA is as
follows. The GA technique creates an ideal binary vector,
with each bit corresponding to a feature. If the ith bit of this
vector equals 1, the ith feature is permitted to participate in
classification; if the bit equals 0, the feature is not permitted
to participate. The starting population is produced at random
from the sample space of feature sets. A score is assigned
to each member in the starting population. The performance
of the provided estimator is measured in this manner. The
estimator used in this study is theMean Squared Error (MSE).

A tournament selection is conducted to decide which
members will continue to the following generation. We set
the tournament size at three, which determines the number of
members who compete against one another based on a score
criterion. The tournament winner is chosen as a parent for the
following generation. After then, the child has both parents’
genetic material. This attribute is called crossover, and we
set it to be 0.5, representing the probability of crossing over
from one generation to the next. Next, a random mutation is
added to each generation in addition to the crossover. We set
the probability parameter that a mutation will happen to 0.2.
Finally, to set the population size to 20 and the maximum
iteration to 100, we implemented the GA so that in case the
population’s best member has not improved over numerous
generations, even before reaching the maximum iteration, the
search has yielded an optimal result.

Using the above procedure, we select nine features out of
41 features. The features selected by GA are illustrated in
table 2.

E. RADIAL BASIS FUNCTION NEURAL NETWORK
ARCHITECTURE
Radial Basis Function (RBF) neural network is widely
used for the nonparametric estimation of a multidimensional
function through a set of limited features. As Fig. 2 shows,
these networks include three layers: Input layer, hidden layer,
and output layer. The duty of the input layer is to assign
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TABLE 2. The selected features via GA and their descriptions.

FIGURE 2. Radial basis function (RBF) neural network architecture.

a neuron for each input feature of the traffic and then feed
the hidden layer with the features of the input layer without
any change (i.e., there is no weight between the input layer
and hidden layer). The hidden layer establishes a nonlinear
correspondence between the input space and a space with
usually a larger dimension (i.e., the nonlinear RBF transfer
functions). Finally, the output layer generates a weighted sum
with a linear output. In the case of classification such as our
work, the activation function of the output layer becomes the
sigmoid activation function.

The neurons of the hidden layer use a Gaussian function as
RBF, as illustrated in equation 2.

ϕj(X ) = e
(−
‖X−XCj

‖

2σj
)

(2)

where XCj , σj and ϕj(X ) denote its well-pointed center
(centroid), spread width (stretch constant) and the response of
the jth hidden neuron corresponding to input X , respectively.
In this equation, the term of ‖X − XCj‖ illustrates the

Euclidean distance between the elements of the input vector
X and the corresponding centroid of Gaussian XCj that can be
calculated as follows

‖X − XCj‖ =

√√√√ n∑
i=1

(xi − XCj ) (3)

where X = [x1, x2, . . . , xn], xi is feature i of the input
layer and n is the number of features in the input layer.
The Important point in designing RBF networks is that the
nonlinear function of the hidden layer neurons should cover
all significant areas of the input vector space.

The outcome values of neurons of the hidden layer are
multiplied by the corresponding weights of each neuron and
passed to the output neurons. Each output neuron adds up
the weighted values. The final summation passes through the
sigmoid activation function to classify the input data as DDoS
or normal traffic. Equation 4 shows the output function.

f (X ) = φ(
m∑
j=1

(wj × ϕj(X ))) (4)

In equation 4, φ is the sigmoid activation function. The
RBF neural network is used in the proposed technique
because (1) the RBF neural network is quick. This issue
assists us in detecting DDoS traffic fast. (2) RBF neural
network is suitable for the cases where data is in the form of
clusters. As App-DDoS requests are in the form of clusters
from big to small [4], RBF neural network is a good choice.

F. TRAINING RBF NEURAL NETWORK USING CUCKOO
SEARCH ALGORITHM
In our RBF neural network, centroid, spread width, and
weight of neurons of the hidden layer are the parameters
that should be well tuned during the training procedure
of the network. To well train the network, improve the
network’s performance in terms of accuracy, and converge
the network fast, the Cuckoo Search Algorithm (CSA) is
utilized. More clearly, (1) CSA can find the global optimum
solution with higher success rates [6]. (2) CSA improves
performance (accuracy) by utilizing Levy flight. (3) CSA
leads to a faster convergence rate.

CSA, which was created by Xin-She Yang and Suash Deb
in 2009, is based on some cuckoo species’ aggressive brood
parasitism and egg-laying technique [14]. CSA has inspired
the behavior of the cuckoo birds that lays their eggs in the
nests of birds of other species. With a probability of Pa,
the host bird discovers the alien eggs and either throws the
alien eggs away or abandons the nest. In CSA, each egg
placed in the nest is a solution. A better solution would be
to place the eggs in safer nests (i.e., the host bird does not
notice the cuckoo’s eggs). The goal of cuckoos over different
generations is to find better solutions. Each nest represents a
set of solutions to the problem in which each egg is a solution.
In general, CSA is based on three rules:

1) Each cuckoo lays exactly one egg at a time and places
it randomly in one of the nests.
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2) The nests having the high quality eggs (i.e., the best
solutions) are used for the next generation.

3) The number of nests available is constant and the
probability of each cuckoo egg being detected by the
host bird is Pa.

CSA starts its work by initializing a random population
of n host nests. Each host nest includes one egg of a
cuckoo bird. Some of these eggs will grow and become
adult cuckoos. Other eggs with the probability of Pa are
detected and destroyed by the host bird. The amount of
eggs grown indicates the suitability of the nests in that area;
hence, cuckoos are interested in migrating to those areas. The
situation where the largest number of eggs is saved will be
a parameter that the cuckoo algorithm intends to optimize.
To migrate to the area including best nests, cuckoos could
balance the global random walk and local random walk to
promote searchability and find a better solution. The global
random walk is modeled mathematically as equation 5.

X t+1i = X ti + α ⊗ Levy(λ) (5)

where X t+1i and X ti indicate the next and current positions
of cuckoo i, respectively. α > 0 denotes the step size
that is normally considered one. The ⊗ is an entry-wise
multiplication. Levy(λ) is the Levy distribution with rate of
λ. In our algorithm, equation 6 models equation 5.

X t+1i = X ti + r ⊗ (X tbest − X
t
i ) (6)

where r is the deviation parameter, it is a vector with random
values a uniform distribution in the range of [0, 1]. To model
the local random walk of cuckoo i, two cuckoos with indices
of j and k are selected randomly between all cuckoos, and the
next position of cuckoo i is calculated as equation 7.

X t+1i = X ti + α ⊗ H (Pa − ε)⊗ (X tj − X
t
k ) (7)

In equation 7, ε is a random value generated based on the
normal distribution.

G. THE PSEUDOCODE OF THE PROPOSED ALGORITHM
Algorithm 1 shows the pseudocode of the proposed algo-
rithm. Let us explain the algorithm with a motivational
example. Consider an RBF network that has two input
neurons (i.e., two features), three neurons in the hidden layer
(the centroid (Xc) and the spread width (σ ) of each neuron
should be trained), and two output neurons. Fig. 3 illustrates
the position vector of a cuckoo. The vector includes X11, X21,
σ1, X12, X22, σ2, X13, X23, σ3,w1,w2, andw3. Xij = ‖xi−XCj‖
distance vector between neuron xi of the input layer and
centroid Xcj of neuron j of hidden layer.

1) THE INITIALIZATION STEP
In the initialization step, the position vector of all cuckoos is
randomly assigned. The RBF function for each neuron of the
hidden layer is calculated according to equation 2. Next, the
output function is calculated as equation 4. Next, the Mean
square error (MSE) as the cost function is calculated for the

Algorithm 1 The Pseudocode of the Proposed Algorithm
1: Initialization phase:
2: Create an initial population of N
solutions

3: for i=1 to N do F N is the number of cuckoos
4: for j=1 to m do F m is the number of neurons of

hidden layer
5: XCj ← random value in [0, 1]
6: σj← random value in [0, 1]
7: wj← random value in [0, 1]
8: end for
9: end for
10: Initialize Pa, ε, tmax

11: for i=1 to N do
12: for j=1 to m do
13: Calculate RBF function for

neuron i based on equation 2
14: end for
15: Calculate output function for the

output neuron based on equation 4
16: Calculate MSE for the output neuron
17: end for
18: Find minimum MSE
19: t ← 0
20: Iteration phase:
21: while (t < tmax or MSE > ε) do
22: Create new population using Levy

flight equation 6
23: for i=1 to N do
24: for j=1 to m do
25: Calculate RBF function for

neuron i based on equation 2
26: end for
27: Calculate output function for

the output neuron based on equation 4
28: Calculate MSE for the output

neuron
29: end for
30: Create new population using local

random walk equation 7
31: for i=1 to N do
32: for j=1 to m do
33: Calculate RBF function for

neuron i based on equation 2
34: end for
35: Calculate output function for

the output neuron based on equation 4
36: Calculate MSE for the output

neuron
37: end for
38: Find minimum MSE
39: Best solution ← the solution with

minimum MSE
40: end while
41: return Best solution
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FIGURE 3. The position of a cuckoo in the presented example.

FIGURE 4. Global random walk (Levy flight) for the presented example.

output. All cuckoos are sorted based on their MSE value in
descending order. The cuckoo with the minimum value of
MSE is considered the best cuckoo.

2) THE ITERATION STEP
In this step, the new position of the cuckoo is calculated with
both global randomwalk (Levy flight) and local randomwalk
according to equations 6 and 7, respectively. Fig. 4 illustrates
the global random walk for this example.

We measure MSE for three positions: The current location,
the new position after the global random walk, and the new
position after the local random walk. The position, which
results in the minimum MSE, is selected as the best position
of the cuckoo for the current time t . The best position is saved
in X tbest for the next iterations.

3) ALGORITHM STOP CONDITION
The algorithm is continued until the number of iterations
either reaches tmax (the upper bound limitation of iterations)
or the achieved MSE in the previous step becomes smaller
than epsilon. The algorithm’s output is a cuckoo population
member with the best values of centroids Xc, σ , and weights
of neurons of the hidden layer in the RBF neural network so
that MSE is the lowest possible. The RBF neural network is
trained with the best solution. Next, the trained RBF neural
network is used to classify traffic packets as App-DDoS or
legitimate.

FIGURE 5. The comparison between CSA-trained RBF, Bagging and k-NN
based on error metric, per training set.

H. MITIGATION TECHNIQUE
The victim server can shut down all connections belonging to
attack traffic when the attack traffic is detected. The victim
server also can send CAPTCHA puzzles to attack sources.
The sources who could not solve the CAPTCHA are bot
machines, and their connection is terminated.

IV. EXPERIMENT AND RESULTS
A. SIMULATION SETUP
We use the MATLAB 2020 software environment to imple-
ment our experiment’s simulation stages. In the following
experiments, the population size of the CSA algorithm is set
to 50 in the proposed method. The maximum iterations in the
proposed method are set to 500, and Pa is set to 0.25.

B. PERFORMANCE METRICS
In order to evaluate the effectiveness of the proposed
technique, we look at the outcomes of the proposed technique
and other methods. The results of the proposed technique
(RBF+ CSA) are compared with the Bagging algorithm and
k-NN classifiers using four error metrics: Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Sum of Squares Error (SSE).
We further compare the performance of the proposed
technique with Bagging and k-NN by calculating five more
performance metrics which are Sensitivity (Sn), Specificity
(Sp), Positive Predictive Value (PPV), Negative Predictive
Value (NPV), and Precision. Finally, we compare the
precision metric of our proposed approach to many other
well-known ML techniques. All experiments are run for
training, testing, and the whole dataset.

C. RESULTS
Figures 5, 6 and 7 show the comparison results between
the proposed technique, Bagging, and k-NN based on error
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TABLE 3. The comparison between CSA-trained RBF, Bagging, and K-NN based on error metrics.

FIGURE 6. The comparison between CSA-trained RBF, Bagging and k-NN
based on error metric, per testing set.

FIGURE 7. The comparison between CSA-trained RBF, Bagging and k-NN
based on error metric, per the whole set.

metrics for the training dataset, testing dataset, and the whole
dataset, respectively. Table 3 shows the same result, but via
a table. As can be seen, the proposed technique improves the
MSE error metric on average by 22% and 57% in comparison
with Bagging and k-NN, respectively. The improvement for
the RMSE error metric is 10% and 24% in compared to
Bagging and k-NN, respectively. The proposed technique

FIGURE 8. The comparison between CSA-trained RBF, Bagging and k-NN
based on standard performance metrics, per training set.

FIGURE 9. The comparison between CSA-trained RBF, Bagging and k-NN
based on standard performance metrics, per testing set.

enhances the MAE error metric on average by 22% and 56%
compared to Bagging and k-NN.

Figures 8 (training dataset), 9 (testing dataset), and 10
(the whole dataset) compare the proposed technique with
Bagging and k-NN for the performance metrics of Sensitivity
(Sn), Specificity (Sp), Positive Predictive Value (PPV),
Negative Predictive Value (NPV), and Precision. Table 4
shows standard performance metrics with a table. As can
be seen, the proposed technique outperforms the Bagging
algorithm and the k-NN technique except in SP and PPV.
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TABLE 4. The comparison between CSA-trained RBF, Bagging, and K-NN based on standard performance metrics.

FIGURE 10. The comparison between CSA-trained RBF, Bagging and k-NN
based on standard performance metrics, per the whole set.

FIGURE 11. The comparison between CSAtrained RBF, SVM, MLP and
RNN, per testing set based on Precision metric.

In terms of precision metrics, we compared our proposed
technique with Support Vector Machine (SVM), Multilayer
Perceptron (MLP), and Recurrent Neural Network(RNN).
Figure 11 compares the accuracy between the proposed
technique, SVM, MLP, and RNN. As can be seen, our
proposed technique enhances the accuracy on average by
0.5%, 3.6%, and 3.5% compared with SVM,MLP, and RNN,
respectively.

V. CONCLUSION
This paper proposes a technique based on machine learning
to cope with App-DDoS attacks. The proposed technique

is a hybrid method of Radial Basis Function (RBF) neural
network and Cuckoo Search Algorithm (CSA). RBF neural
network is used for classification, while CSA is used to train
the RBF network. The feature selection procedure of the
dataset (NSL-KDD) is done based on the Genetic Algorithm
(GA). Several experiments are conducted to evaluate and
compare the proposed technique with the Bagging algorithm,
k-NN classifier, SVM, MLP, and RNN. The simulation
results, i.e., accuracy = 96.9%, MSE = 0.134, RMSE =
0.366, and MAE = 0.067, clearly indicate the superiority
of the proposed technique against standard machine learning
techniques that are used to detect App-DDoS attacks.
The proposed technique enhances the accuracy on average
2% compared with all mentioned machine learning-based
techniques for all sets of datasets (training dataset, testing
dataset, and the whole dataset).
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