
 

 

Master thesis 
Degree of Master of Science in Engineering, 
Computer Science and Engineering, 300 credits 

 

LiDAR Point Cloud De-noising for 
Adverse Weather 
Computer science and engineering, 30 credits 
 

 

 

Halmstad, 2022-06-15 

Johan Bergius, Jesper Holmblad 

 
 



M
A
STER

TH
ESIS

LiDAR Point Cloud De-noising for Adverse Weather

Johan Bergius & Jesper Holmblad

Embedded and Intelligent Systems & Information Technology

Halmstad University , June 15, 2022–version 4.0



examiner:
Slawomir Nowaczyk

supervisor:
Eren Erdal Aksoy

location:
Halmstad University

time frame:
November 2021 - June 2022



A B S T R A C T

Light Detection And Ranging (LiDAR) is a hot topic today primarily
because of its vast importance within autonomous vehicles. LiDAR

sensors are capable of capturing and identifying objects in the 3D en-
vironment. However, a drawback of LiDAR is that they perform poorly
under adverse weather conditions. Noise present in LiDAR scans can
be divided into random and pseudo-random noise. Random noise
can be modeled and mitigated by statistical means. The same ap-
proach works on pseudo-random noise, but it is less effective. For
this, Deep Neural Nets (DNN) are better suited. The main goal of
this thesis is to investigate how snow can be detected in LiDAR point
clouds and filtered out. The dataset used is Winter Adverse Driving
dataSet (WADS) [23].

Supervised filtering contains a comparison between statistical fil-
tering and segmentation based neural networks and is evaluated on
recall, precision, and F1. The supervised approach is expanded by
investigating an ensemble approach.

The supervised result indicates that neural networks have an ad-
vantage over statistical filters, and the best result was obtained from
the 3D convolution network with an F1 score of 94.58%. Our ensem-
ble approaches improved the F1 score but did not lead to more snow
being removed. We determine that an ensemble approach is a sub-
optimal way of increasing the prediction performance and holds the
drawback of being more complex.

We also investigate an unsupervised approach. The unsupervised
networks are evaluated on their ability to find noisy data and cor-
rect it. Correcting the LiDAR data means predicting new values for
detected noise instead of just removing it. Correctness of such pre-
dictions are evaluated manually but with assistance of metrics like
PSNR and SSIM.

None of the unsupervised networks produced an acceptable result.
The reason behind this negative result is investigated and presented
in our conclusion, along with a model that suffers none of the flaws
pointed out. We also present all our source code, which is publicly
available at 1 2.

1 https://github.com/jabergius33/LiDAR-point-cloud

2 https://github.com/Jesper-H/LiDAR_De-noising

iii

https://github.com/jabergius33/LiDAR-point-cloud
https://github.com/Jesper-H/LiDAR_De-noising




C O N T E N T S

1 introduction 1

1.1 Research questions 1

1.2 Contributions 2

1.3 Limitation 2

2 related works 3

2.1 Statistical filtering 3

2.2 CNN 4

2.2.1 Pointwise approach 4

2.2.2 Projection approach 4

2.2.3 Voxel approach 5

2.2.4 Bird-eye view approach 5

2.3 GAN 6

3 background 7

3.1 Statistical filtering approaches 7

3.1.1 DSOR 7

3.1.2 DROR 8

3.1.3 LiOR 9

3.1.4 Combining LiOR, DSOR, and DROR 9

4 dataset 11

4.1 Data structure 11

4.2 Data cleaning 12

4.2.1 Labels 13

4.3 Data split 13

4.4 Incorrect labels in the dataset 13

5 methodology 15

5.1 Visualization 15

5.1.1 Spherical projection 15

5.2 Projection post processing 16

5.3 Projection based semantic segmentation approach 17

5.4 Projection based semantic segmentation approach 18

5.5 3D CNN based semantic segmentation approach 19

5.6 BEV based semantic segmentation approach 20

5.7 Evaluation of results 21

5.7.1 Supervised evaluation 21

5.7.2 Unsupervised evaluation 22

5.7.3 Basic Segmentation Model 25

5.7.4 Conventional CycleGAN 25

5.7.5 Masked GAN 27

6 results 29

6.1 Supervised Filtering result 29

6.1.1 Quantitative evaluation 29

6.1.2 Qualitative evaluation 32

v



vi contents

6.2 Unsupervised Filtering Models 37

6.2.1 Conventional CycleGAN 37

6.2.2 Masked GAN 37

6.3 Supervised filtering experiments 38

6.3.1 Hardware 38

6.3.2 SalsaNext 39

6.3.3 Cylinder3D 40

6.3.4 PolarNet 41

7 discussion 43

7.1 Supervised results 43

7.1.1 Labeling 43

7.1.2 Ensemble result 44

7.2 Unsupervised 44

7.2.1 Domain adaptation 45

7.3 Sustainability considerations 46

8 conclusion 49

8.1 Supervised filtering methods 49

8.2 Unsupervised filtering methods 49

8.3 Future work 50

bibliography 53



L I S T O F F I G U R E S

Figure 1 The structure of the dataset. 12

Figure 2 Incorrect labeling in WADS. The left side uses
original labels of WADS, and the right side uses
our binary labels. The top image showcases
a car (red square), two signs (orange square),
and two buildings (yellow square) being misla-
beled as falling snow. The bottom image show-
cases ground (blue square), signs (orange squ-
are), and buildings being mislabeled as falling
snow. 14

Figure 3 Visualization of WADS sequence 30, scan 041570.
Left side shows original labels whereas right
side shows the binary labels used for super-
vised training. 16

Figure 4 Segmentation model based on SalsaNext [9].
K represents the kernel sizes and d represents
the dilation size of the kernel. 18

Figure 5 Projection-based semantic segmentation model
based on WeatherNet. K indicates the kernel
sizes, and d represents the dilation size of the
kernel. 19

Figure 6 Sparse 3D convolution model based on Cylin-
der3D. 20

Figure 7 BEV model-based on PolarNet. K represents
the kernel sizes, and d represents the dilation
size of the kernel. The model uses the same
padding as PolarNet [47]. 21

Figure 8 2D visualization of the identity test performed
on a GAN model based on SalsaNext. Top im-
age is the input and the bottom is the identity
test output. Images are very difficult to distin-
guish from each other. 24

Figure 9 3D visualization of identity test performed on
a GAN model based on SalsaNext. Left image
shows the input and the right shows the out-
put. The right image contains clearly visible
noise. 24

Figure 10 Illustration of blocks used for all unsupervised
models 25

vii



viii List of Figures

Figure 11 Design of the generator used in unsupervised
models. Each block is shown in greater detail
in Figure 10 26

Figure 12 Design of the discriminator used in unsuper-
vised models. Each block, not explained in this
figure, is shown in greater detail in Figure 10 26

Figure 13 General structure of our CycleGAN network.
Generator blocks are marked with a G and fol-
low the structure shown in Figure 11. Disc-
riminator blocks are marked with a D and are
shown in detail in Figure 12 27

Figure 14 A breakdown of out masked GAN network.
Block G is a generator block as shown in Fig-
ure 11. Block M is the same but has a sig-
moid activation and separates the input into
separate channels. Discriminator block D is as
seen in Figure 12. First row show procedure
for clean input while the second is for snowy
input 28

Figure 15 Qualitative evaluation of LiOR&DSOR on scan
041570 in sequence 30. The left side contains
the ground truth, and the middle contains the
prediction of LiOR&DSOR. The right side con-
tains true-negative as green, false-negatives as
white, and false-positive as red. 33

Figure 16 Qualitative evaluation of SalsaNext on scan 041-
570 in sequence 30. The left side contains the
ground truth, the middle contains the predic-
tions of SalsaNext. The right side contains true-
negative as green, false-negatives as white, and
false-positive as red. 34

Figure 17 Qualitative evaluation of PolarNet on scan 041-
570 in sequence 30. The left side contains the
ground truth, the middle contains the predic-
tion of PolarNet. The right side indicate true-
negative as green, false-negatives as white, and
false-positive as red. 35

Figure 18 Qualitative evaluation of Cylinder3D on scan
041570 in sequence 30. The left side contains
the ground truth, the middle contains the pre-
diction of Cylinder3D. The right side indicate
true-negative as green, false-negatives as white,
and false-positive as red. 36



List of Figures ix

Figure 19 Result of an identity test on CycleGAN. Colors
represent the remission values. Left view sh-
ows input point cloud, middle view shows the
output and right view shows the reconstructed
input 37

Figure 20 Results of mapping from snowy to clean data.
Colors represent the remission values. Left view
shows the input data where colors represent
remission values, middle view shows the out-
put and right view shows the reconstructed in-
put. 38

Figure 21 Result of de-snowing point clouds with masked
GAN. Left view shows input point cloud, color
represents the remission values. Middle view
shows the generated mask, here color repre-
sent probability of snow. Note that some snow
points have lower values than the walls. Right
view shows the output, where color represent
remission values. 38

Figure 22 Loss function for the SalsaNext based model,
trained for 400 epochs. 39

Figure 23 Loss function for Cylinder3D model trained
for 200 epochs. 40

Figure 24 Loss function for the PolarNet model trained
for 200 epochs. 41

Figure 25 Suggested model for LiDAR de-snowing. Cir-
cles symbolise domains and squares are net-
works. The letters S, C and LS stands for snow,
clean and latent domain, respectively. G and
D stands for generator and discriminator net-
work, respectively. 46



L I S T O F TA B L E S

Table 1 Distribution of the Velodyne point cloud. The
data format of each feature is an 8-bit float
point value. 12

Table 2 The most common labels used in WADS. 13

Table 3 Parameters used for the K-Nearest Neighbors
(KNN) post processing. 17

Table 4 Weights to improve class imbalance of the pro-
jection model. 17

Table 5 Result of supervised filtering of snow points
on the WADS test split described in section 4.3.
Precision, Recall, and F1 are measured in %
and the execution times are in milliseconds.
Inference of DNN are run on GPU, and statisti-
cal filters are run on CPU. Note that execution
time for SalsaNext & WeatherNet excludes the
KNN-based post processing method. 30

Table 6 Model-weights used in the weighted ensemble.
Values are normalized and based on their pre-
diction score. Note that those weights are de-
fined heuristically. 31

Table 7 Result of ensemble models. Results are pre-
sented in (%). The ensemble indicate the type
of combination that is used between methods. 31

Table 8 Performance of SalsaNext with and without
augmentation. Results are presented in (%). 39

Table 9 Comparison of two and three encode/decoder
blocks in SalsaNext. 40

Table 10 Result of using two (range and intensity) com-
pared to five input channels for SalsaNext. Drop-
out was removed when using two input chan-
nels. 40

Table 11 Comparison between Cylinder3D with and with-
out augmentation. Results are presented in (%). 41

Table 12 Comparison of two and three encode/decoder
blocks in Cylinder3D architecture. Results are
presented in (%). 41

Table 13 Comparison of two and three encode/decoder
blocks in PolarNet architecture. 42

x



A C R O N Y M S

LiDAR Light Detection And Ranging

DROR Dynamic Radius Outlier Removal

DSOR Dynamic Statistical Outlier Removal

LiOR Low-intensity Outlier Removal

CNN Convolutional Neural Networks

GAN Generative Adversarial Networks

KNN K-Nearest Neighbors

WADS Winter Adverse Driving dataSet

DNN Deep Neural Nets

CycleGAN Cycle-Consistent Adversarial Networks

BCE Binary Cross Entropy

BEV Bird Eye View

xi





1
I N T R O D U C T I O N

LiDAR [2, 17, 31] is a well-used technology within autonomous ve-
hicles in order to perceive the environment and make decisions. A
problem regarding LiDAR is that it performs very poorly under ad-
verse weather conditions [5, 18, 40] where objects such as falling snow,
fog, and rain result in noisy sensor readings. As a result, subsequent
tasks, such as planning and decision making, also perform poorly.
Under adverse weather conditions, de-noising methods can enhance
the performance of subsystems connected to the LiDAR sensor.

Snow can create scenarios outside the training set of subsequent
tasks. This noise can potentially create hard faults similar to those of
adversarial attacks [22, 35]. To enable models unfamiliar with snow
to function deterministically, we see a need to remove snow points.
Examples of subsequent tasks that we believe will benefit from this
are: object detection, path prediction, 3D segmentation, and object
classification [25].

Unlike ordinary noise, precipitation is subject to physics and thus
not entirely random. Generation and filtering of such pseudo-random
noise through statistical means is not ideal. Another caveat of conven-
tional statistical methods is that they only remove the noisy data. In
some cases, the absence of data can be just as averse as the presence
of noise. In autonomous vehicles, the filtered data would result in
higher frequency noise, potentially increasing the risk of unintended
behaviors. For this, more intelligent and aware solutions based on
machine learning should be explored.

1.1 research questions

The following are our research questions:

• Do Neural Networks outperform statistical filtering methods
for snow removal?

• Are 3D Networks better at filtering out snow than 2D Net-
works?

• Can Ensemble methods help improve the classification result?

• Is unsupervised de-noising possible? And if so,

• What is a sound network structure?

1



2 introduction

1.2 contributions

This thesis aims to de-snow 3D LiDAR point cloud data using classical
state-of-the-art statistical filtering algorithms and DNN-based imple-
mentations. The current state-of-the-art classical solutions, such as
DROR [7], DSOR [23] and LiOR [27], will serve as a baseline for com-
paring new approaches for filtering snowfall in adverse weather point
clouds. To achieve this, our contributions are the following:

• A comparison of the state-of-the-art filtering approaches against
neural network based approaches on adverse weather point cl-
oud data. The comparison will be evaluated based on Precision,
Recall, and F1 metrics.

• Investigation of ensemble approaches for improving the result
of single method classifications. The investigation will include
unanimous voting, majority voting, and weighted voting.

• An unsupervised CycleGAN based filter for adverse weather
LiDAR data. This filter will generate new data, rather than a
mask. The main feature is that it uses uncoupled data to learn
features without the need of explicit labels.

• A GAN model implementing an attention module that gener-
ates a mask that allows direct comparison with statistical mod-
els using native metrics like accuracy and F1 score.

1.3 limitation

A limitation within this thesis will be that we will only consider
falling snow as an outlier. Therefore, snow on the ground, also known
as accumulated snow, will not be considered noise.



2
R E L AT E D W O R K S

The aim of this thesis is to develop a new way of using Machine
Learning to localize and remove precipitation in LiDAR point clouds.
Another critical aspect is to present a comparison between the current
state-of-the-art against our proposed solutions. The content of this
section is dedicated to present what approaches already exist within
the research field. This includes presenting related works that tackle
problems similar to this thesis. In section 2.1, we will first present the
existing statistical filtering algorithms that are currently being used
as state-of-the-art. In section 2.2, we present the CNN-based segmen-
tation solutions related to the task. In section 2.3, we present relevant
articles on GAN and cycleGAN within the research field.

2.1 statistical filtering

Statistical filtering leverages biases of various metrics to discriminate
between noise and background points in a point cloud. Their main
selling points are that they can often be explained mathematically
and in theory does not require labeled data. In practice, however,
the various hyperparameters of the filter require labeled data to get
sufficient statistics for the optimal performance.

Dynamic Radius Outlier Removal (DROR) is the state-of-the-art so-
lution for LiDAR point cloud filtering. It was proposed back in 2018

by Charron et al. [7] with the focus of improving recall and preci-
sion, which means maximizing snow removal while still containing
environmental features compared to ROR [32]. DROR is built on cal-
culating 2D distances for each point in the point cloud to the LiDAR.
Based on the distances, the search radius is calculated for each point.
Based on the search radius and the nearest neighbor search, the num-
ber of neighbors is determined. Finally, each point with less than
k-neighbors is categorized as an outlier/noise.

Another state-of-the-art solution called Dynamic Statistical Outlier
Removal (DSOR) was introduced by Kurup et al. 2021 [23]. The main
goal of DSOR was to develop an improved variant of the already
known filtering technique called SOR [32], which is also a filter for
cleaning LiDAR point clouds with the main drawback of not being
able to remove snow. DSOR relies on calculating the mean, standard
deviation, and a global threshold based on the distances of the k near-
est neighbors for each point/particle.

Low-intensity Outlier Removal (LiOR) is another unique LiDAR fil-
tering algorithm that was presented by Park et al. 2020 [27]. LiOR is

3



4 related works

designed to primarily be a fast filtering technique that seeks to con-
tain as much recall and precision as possible compared to DROR. They
achieve this by utilizing intensity as a fourth dimension compared
against DROR.

2.2 cnn

Convolutional Neural Networks (CNN) utilizes a function of pixel val-
ues in a sliding window to transform images into a filtered image.
This can be extended to transform a point cloud into a filtered image.
This can provide more contextually aware filtering, which often re-
sults in better performance than statistical methods. The trade-off is
the loss of explainability and the requirement of the labeled training
data.

2.2.1 Pointwise approach

Point-wise networks are a well-known technique that has been seen
usage within segmentation of both indoor and outdoor LiDAR points
clouds. The original idea of point-wise segmentation was introduced
by Ruizhongtai et al. 2017 [29, 30], named PointNet/PointNet++. An-
other more recent design was introduced by Hugues et al. 2019 [37]
named KPConv. In this work, a spatial convolution kernel is used to
learn the feature weights of points. The kernel is represented as a cir-
cular filter that takes inspiration from a standard 2D CNN. The work
of Yang et al. 2020 [21] is another point-wise method called Rand-
LANet. RandLANet is distinguishable by random sampling, which
requires less computational power. Also, its robust pattern recogni-
tion is based on an aggregation of local features and consists of shared
MLPs. The main disadvantages of these approaches are that their
computational processing is complex, making them hard to converge
in a reasonable time.

2.2.2 Projection approach

An approach presented by Milioto et al. 2019 [26] introduces a new
solution for LiDAR point cloud segmentation that is able to outper-
form many existing solutions on semantic segmentation. This is ac-
complished by using a typical 2D spherical projection to combine the
data into a 2D image and then perform standard CNN segmentation.
This work also introduces a state-of-the-art approach of utilizing a
GPU-based KNN search that is able to infer labels of points that are
obstructed in the 2D projection. In a work by Cortinhal et al. 2020 [9],
based on Salsanet [3], point clouds are also projected into a 2D spher-
ical image and then segmented using a contextually aware model.
This approach is considerably faster than the 3D space-based models



2.2 cnn 5

making it more suited for real-time applications such as autonomous
vehicles. Heinzler et al. 2020 [19] present an appealing approach to
utilizing CNN to filter out adverse weather, mainly targeting rain
and fog. The proposed method, named WeatherNet, is built upon a
variant of LiLaNet but deviates by adding dropout layers, adapting
the inception layer by including dilated convolution, and minimizing
the complexity of LiLaNet.

2.2.3 Voxel approach

Liu et al. 2020 [36] investigate a 3D deep learning architecture that is
based on a combination of point-based and voxel-based solutions. To
measure their performance, they utilize datasets from both an indoor
and outdoor environment and compare their advantages and disad-
vantages. The main objective of this work is to investigate if a point-
voxel convolution can be used effectively in processing large outdoor
datasets. Zhu et al. 2021 [48, 20] propose a solution for LiDAR object
detection based on 3D voxel-based Convolution Networks instead of
a common 2D spherical projection. The primary approach is based on
3D pattern recognition utilizing asymmetrical 3D convolutions. Their
work also incorporates the voxel-wise loss using the standard cross-
entropy and Lovasz-softmax loss functions. An approach by Yan et
al. 2020 [42] presents a framework for Semantic Segmentation (SS) to-
gether with Semantic Scene Completion (SSC) by utilizing contextual
learning of shapes. They archive their end-framework by using point
and voxel relations to combine the knowledge of SS and SSC. The
evaluation is performed on the SemanticKITTI and SemanticPOSS
datasets.

2.2.4 Bird-eye view approach

Zhang et al. 2018 [44] present a unique approach of using a voxel-
grid in order to generate a 2D Bird Eye View (BEV) image. They ac-
complish this by generating voxel patches (V ′

x,y) for each voxel and
using z as feature channels. They flatten the z dimension and take
X ∗ Y ∗ (ZC) as their network input. To deal with this in their output,
they decode the feature vector with a 1x1 convolution with H ∗K out-
put channels. H represents the z dimension, and K the probability
distribution. This approach avoids the nearest neighbor search, most
commonly used in similar works. Zhou et al. 2020 [45, 47] adapts
this approach and presents a network structure based on a typical
encoder-decoder structure but differs by adapting circular padding to
perform circular convolutions. The core idea of circular convolutions
is to replace the standard zero padding and instead pad utilizing the
content on the opposite side of the image. Thus circular convolutions
can avoid blind spots near the image borders [33].



6 related works

2.3 gan

Generative Adversarial Networks (GAN) [14] are composed of a dis-
criminator and a generator, which optimize opposing problems. The
generator produces fabricated information and the discriminator tries
to tell it apart from the actual data. This allows networks to cover
plausible data that is not present in the training set.

TITAN-NET by Cortinhal et al. 2021 [10] is a GAN model that takes
point clouds and real images as input to produce segmented patches.
TITAN-NET differs as it focuses on sensor fusion. However, the build-
ing blocks are relevant to this work.

An approach used by Yanyan et al. 2021 [39] is to generate im-
ages without precipitation using Cycle-Consistent Adversarial Net-
works (CycleGAN) trained on one clean dataset and another dataset
containing images with rain. This opens up the possibility of training
using unlabeled data. Their model also features an attention mod-
ule that creates a precipitation mask for all images, breaking down
the problem into two sub tasks: find and replace. Their research also
provides a generated dataset that offers better generalisation than ar-
tificial datasets.

Wenchao et al. 2020 [11] propose a solution using domain adap-
tation to create a clean domain. It utilizes a discriminator to make
a latent representation of both clean and rainy images indistinguish-
able. The latent representation is then used to generate both clean and
rainy images in a CycleGAN. One of the axioms this solution builds
on is that a rainy image is composed of a clean background image
with added rain, to which one can argue that implicit properties of
rain are not covered by such a statement. For example, a rainy lake
implies ripples on the water; simply removing the rain does not leave
a clean background image. However, while their theory does not hold,
the practice holds. This is because the domains are many-to-one, there
are many types of precipitation but only one background per scene.
This implies the target domain has constant properties that can be
learned as a bias.



3
B A C K G R O U N D

In this chapter, we will talk about the background of statistical filter-
ing. Within section 3.1, we are going to present what and how we
created as baseline consisting of statistical filters.

3.1 statistical filtering approaches

This will include sections 3.1.1-3.1.4 in which we will present the basic
information about DSOR, DROR, LiOR and the combination of LiOR with
DSOR and DROR.

3.1.1 DSOR

The algorithm of DSOR is implemented according to the one presented
in [23]. DSOR utilizes three parameters to detect and filter out snow: S,
k, and r. S is the multiplication factor for standard deviation. k is the
number of points that are considered in the nearest-neighbor search,
and r is the multiplication factor for the range. The nearest-neighbor
search is implemented with the Manhattan distance. The implemen-
tation of DSOR is shown within algorithm 1. Hyperparameter tuning
is done manually based on a subset of the training set presented in
chapter 4.

Algorithm 1 DSOR filtering method, implemented based on [23].

1: procedure DSOR(P,S = 0.04, r = 0.08,k = 5)
2: P ← Px,y,z

3: tree← KDTree(P)

4: distances← tree.query(P,k)
5: for di ∈ distances do
6: dmean,i ← mean(di)

7: end for
8: µ← mean(distances)

9: σ← std(distances)

10: threshold← µ+ σ · S
11: R =

√
x2p + y2

p + z2p
12: th← threshold ∗ r ∗ R
13: mask = dmean ⩾ th

14: Return mask

15: end procedure

7



8 background

3.1.2 DROR

The algorithm of DROR is implemented according to the one pre-
sented in [7]. DROR uses four parameters to detect and filter out snow:
b, α, kmin, and SRmin. b is the multiplication factor for radius. α is
the horizontal angular resolution. k is the minimum number of neigh-
bors and SRmin is the minimum Search Range. The filtering approach
for DROR is provided in algorithm 2. The nearest-neighbor search is
implemented with the Manhattan distance. Hyperparameter tuning
is done manually based on a subset of the training set presented in
chapter 4.

Algorithm 2 DROR filtering method, implemented based on [7].

1: procedure DROR(P,b = 0.2,α = 0.16,kmin = 8,SRmin = 0.08)
2: P ← Px,y,z

3: tree← KDTree(P)

4: R←
√

x2p + y2
p

5: for ri ∈ R do
6: if ri ⩽ SRmin then
7: ri ← SRmin

8: else
9: ri ← b ∗ (ri ∗α)

10: end if
11: SRi ← ri
12: end for
13: K← tree.query(P,Search Radius= SR)

14: for ki ∈ K do
15: mask← ki < kmin

16: end for
17: Return mask

18: end procedure



3.1 statistical filtering approaches 9

3.1.3 LiOR

LiOR filtering approach is designed according to the original design
presented in [27]. The algorithm uses four hyperparameters. SR is the
Search Range for the nearest-neighbor search. k is the minimum num-
ber of neighbors. Sdr is the range for detecting snow, and Ithreshold

is the intensity threshold. The nearest-neighbor search is implemented
with the Manhattan distance. Implementation of LiOR is shown within
algorithm 3. Tunning of hyperparameter is done manually based on
a subset of the training set presented in chapter 4.

Algorithm 3 LiOR filtering method, implemented based on [27]

1: procedure LiOR(P,SR = 0.05,k = 3,Sdr = 144, Ithreshold =

0.066)
2: I← PI
3: P ← Px,y,z

4: R =
√
x2p + y2

p + z2p
5: for ri ∈ R, do
6: if ri ⩾ Sdr then
7: Ii ← 0

8: end if
9: end for

10: tree← KDTree(P)

11: neighbours← tree.query(P,search radius= SR)

12: for ni ∈ neighbours do
13: if (ni < k) & (Ii ⩽ Ithreshold) then
14: maski ← True

15: else
16: maski ← False

17: end if
18: end for
19: Return mask

20: end procedure

3.1.4 Combining LiOR, DSOR, and DROR

The combination of LiOR+DSOR and LiOR+DROR is our contribution.
We accomplished this by joining together the algorithm of LiOR+DSOR

and LiOR+DROR by simply using an AND-wise procedure (unanimous
combination) between the mask produced by each algorithm. Hyper-
parameters are the same as in the default algorithms.





4
D ATA S E T

The input dataset for this problem is LiDAR points clouds, consisting
of typical environment objects and adverse weather points. These ad-
verse weather points include snowy points captured by the original
LiDAR sensor. WADS1, introduced by Kurup et al. [23] is the only pub-
licly available dataset [43] that contains labeled point cloud data of
adverse weather conditions. In this chapter, the dataset will be the
main focus. This includes data cleaning and discovered issues regard-
ing WADS. In sections 4.1, the format of the data will be presented.
In section 4.2, the steps of cleaning the data will be explained. Sec-
tion 4.3 will be dedicated to explaining how the dataset is divided
into training, validation, and test splits to perform machine learning
and deep learning. Section 4.4 is dedicated to presenting incorrect
labeling in WADS.

4.1 data structure

As mentioned previously, the WADS dataset introduced by Kurup et
al. [23] has been utilized. The data is represented in the standard
SemanticKITTI data format [4, 13, 34] which contains vectors with
point cloud frames and corresponding labels for each data point. The
SemanticKITTI format structures data and labels by storing them in
different folders for each sequence. This is shown in Figure 1. The co-
ordinates and their respective intensity values are stored as .bin files
within a folder named velodyne, and the labels are stored on their
own as .label within a folder named labels. Each bin files contains a
point cloud that holds {x1, x2, ..., xi} data points and xi ∈ R4 features.
In Table 1, the data distribution for the entire dataset is shown and in
Table 2 the most common labels are described.

1 https://digitalcommons.mtu.edu/wads/

11



12 dataset

Figure 1: The structure of the dataset.

Table 1: Distribution of the Velodyne point cloud. The data format of each
feature is an 8-bit float point value.

x y z intensity

count 50600000 50600000 50600000 50600000

mean -0.11 3.45 -0.49 8.55

std 23.80 15.90 1.53 13.80

min -200.00 -136.00 -12.60 0.00

25% -10.20 -9.23 -1.59 2.00

50% 0.46 0.22 -0.65 8.00

75% 10.80 13.30 0.12 14.00

max 200.00 190.00 28.20 255.00

4.2 data cleaning

The first part of the data cleaning was to remove sequence 37 as it was
an exact copy of sequence 36. Identical files were discovered within
a majority of all sequences. We verified that these were duplicates by
comparing the files and removed all copies. We verified the data by
fetching and storing them without manipulating the original format,
according to the SemanticKITTI [4] documentation. Coordinates files
were extracted into x, y, z, and intensity (8-bits float). The same was
done for the labels (8-bits integer). We found that 35 percent of coordi-
nates were duplicates. These were also removed. After data cleaning,
approximately 4 GB of the original data remained.



4.3 data split 13

Table 2: The most common labels used in WADS.

Name Label

Unlabeled 0

Car 10

Road 40

Building 50

Vegetation 70

Pole 80

Snow 110

Accumulated snow 111

4.2.1 Labels

An important part was to alter the labels of the original data to some-
thing more useful for visualization and binary classification task. The
default label for snow is represented as 110. Instead, we altered the
labels by changing all labels into binary labels to represent zero for
non-snow particles and one for snow particles.

4.3 data split

The dataset contains scans from 19 different sequences, with an es-
timated 1300 point cloud frames, unevenly distributed between all
sequences. In order to run deep learning networks without including
the same data twice, it was required to divide them into training, val-
idation, and test splits. However, one problem is that the dataset is
considerably smaller compared to similar datasets [4]. This caused us
to restrict most of the data for training and testing purposes and leave
a single split for validation. The training split consists of sequence 11

to 26 (11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 26), which is equiva-
lent to 70% of the dataset. The test split consists of sequences 30 to 76

(30, 34, 35, 36, 76), equivalent to 25% of the data. The validation split
consists of only sequence 28.

4.4 incorrect labels in the dataset

An important observation that concerns the labeling of WADS is that
there seems to be a considerable amount of mislabeled points within
a minority of the point clouds. This is shown in Figure 2 where a car
(red square), sign (orange square), building (yellow square), and road
(blue square) are mislabeled as falling snow.



14 dataset

Figure 2: Incorrect labeling in WADS. The left side uses original labels of
WADS, and the right side uses our binary labels. The top image
showcases a car (red square), two signs (orange square), and two
buildings (yellow square) being mislabeled as falling snow. The
bottom image showcases ground (blue square), signs (orange squ-
are), and buildings being mislabeled as falling snow.



5
M E T H O D O L O G Y

This chapter is dedicated to describing the methodologies used to
obtain the results that will be presented in chapter 6. Section 5.1 will
be dedicated to the visualization of the data. Section 5.2 will explain
the post-processing of the projection model. In section 5.3-5.6, the
DNN models will be explained. Section 5.7 will present the metrics
used to evaluate both the unsupervised and supervised results.

5.1 visualization

Visualization is a means to verify that data is intact after being pro-
cessed. Not just our processing, but all. For instance, we used visu-
alization to confirm that the data scans had identical points within
scans, as described in section 4.2. To improve clarity of the visualiza-
tion, the data needs to be presented as human-readable as possible.
Our approach is to visualize in both 2D and 3D spaces. Data is nor-
malized and a non linear operation is applied namely f(x) = x1/8.
Expected non-linearity was f(x) = x1/4 since light intensity from a
black body radiator is proportional to T4 where T is the temperature
in Kelvin, but practical results showed our current non-linearity is
better for unknown reasons. We also make use of optimized color
palettes such as Viridis1 that improves readability when visualizing
linear properties such as remission values.

3D space visualization is done with the help of Vispy2. Since the
data is already in 3D space and there is rich documentation on the
user library, the 3D visualization is a more or less trivial task. An ex-
ample visualization of labeled data can be seen in Figure 3 where two
views of a point cloud are observable. On the left side, the point cloud
is plotted with the original labels from the WADS dataset, which are
based on the labels within SemanticKITTI but with two extra labels
for snow and accumulated snow. On the right side, the point cloud
is visualized with the binary labels used within our model. White la-
bels correspond to points classified as falling snow, and green points
correspond to everything else.

5.1.1 Spherical projection

The approach for the projection-based task is to transform the original
3D point cloud into 2D images by using a spherical projection method.

1 https://matplotlib.org/stable/tutorials/colors/colormaps.html
2 https://vispy.org/

15



16 methodology

Figure 3: Visualization of WADS sequence 30, scan 041570. Left side shows
original labels whereas right side shows the binary labels used for
supervised training.

Projection is based on the one presented in[26, 9]. The projection takes
a set of cloud point Pi : (x,y, z) and transform them into the 2D space
(R2) image, according to equation 1:(

u

q

)
=

(
1
2 [1− arctan(y, x) · π−1]w

[1− (arcsin(z · r−1) + fdown)f
−1]h

)
, (1)

where u and q correspond to the x and y coordinates in the generated
2D image. h and w correspond to the desired height and width of the
2D image. r is the Euclidean distance

√
x2 + y2 + z2. f = fup+ fdown

is the sensor field-of-view, in the vertical direction.
Projection code also tracks the index of each pixel had in the point

cloud so that information can be back referenced. This is used in the
projection approach described in section 5.3.

When generating images, there is no original point cloud to back-
reference to. This poses a problem as the reverse operation is required
to be able to output a point cloud. To solve this problem, we have im-
plemented our own reverse projection. The projection T is a loss-full
transform so the condition the reverse transform T−1 must fulfill is
defined as T(T−1(T(P))) = T(P) where P is a point cloud.

5.2 projection post processing

2D projection described in section 5.1.1 offers fast convolutions but
can not be fully reversed. The method used to reverse the projection
is to store the index of all points in a picture during projection and
afterward use it to back-reference all predicted labels back into 3D
space. However, some points are obstructed in the 2D view and thus
unlabeled after the backward reference. This is solved by inferring



5.3 projection based semantic segmentation approach 17

labels for all unlabeled points with a fast KNN search[26]. The param-
eters used in the KNN post-processing are shown in Table 3.

Table 3: Parameters used for the KNN post processing.

Parameter Value

Search kernel 11

Cutoff dist. 20

K 5

Sigma 1.0

5.3 projection based semantic segmentation approach

Our projection-based segmentation model is built on SalsaNext [9],
which utilizes a U-Net architecture. Our model is illustrated in Fig-
ure 4 and uses a two-block U-Net structure. Our model is adapted by
removing a context module in front of the encoder and adding one
right before the final convolution layer. Additionally, the final struc-
ture was altered for binary classification. The network input is the
five-dimensional range-view image produced by the spherical pro-
jection described in section 5.1.1. The image is created in 64 x 2048

(height and width) format and utilizes five input channels (range,
intensity, x, y, z). Augmentation consists of y-axis rotation, flipping
signs, and randomly dropping points with an individual probabil-
ity of 0.5. Our model uses a weighted Binary Cross Entropy (BCE)
loss. The weights are applied for the entire batch and multiplied by
the class-wise weights. The weights are added to deal with the prob-
lem of class imbalance between outliers and inliers (snow and non-
snow). The weights are seen in Figure 4 and calculated based on the
amount of snow in a projected image from the training split. The op-
timizer used is based on the one presented in SalsaNext, which uses
stochastic gradient descent with a learning rate of 0.01 and decreased
with a factor of 0.01 per training epoch. The optimizer uses a mo-
mentum of 0.9. The dropout factor was tuned to 20% after manual
cross-validation.

Table 4: Weights to improve class imbalance of the projection model.

Class Weight

Snow 0.72

Non-snow 0.28



18 methodology

Figure 4: Segmentation model based on SalsaNext [9]. K represents the ker-
nel sizes and d represents the dilation size of the kernel.

5.4 projection based semantic segmentation approach

The second projection approach is based on WeatherNet [19]. This net-
work used the same spherical projection as SalsaNext, which is pre-
sented in section 5.1.1. The range-view image is created in 64 x 2048

format and uses two input channels (range, intensity). The model is
shown in Figure 5. The model uses BCE loss. Weights are applied to
deal with the problem of class imbalance between inliers and outliers.
Weights are shown in Table 4. The dropout factor used is 0.5 and the
optimizer is Adam with a learning rate of 0.00005.



5.5 3d cnn based semantic segmentation approach 19

Figure 5: Projection-based semantic segmentation model based on Weather-
Net. K indicates the kernel sizes, and d represents the dilation size
of the kernel.

5.5 3d cnn based semantic segmentation approach

The basic concept of using 3D convolutions on spatially-sparse data
[15, 46] is that 3D convolutions utilize the concepts of Fast Fourier
Transform (FFT), which are used in ordinary 2D convolution and pro-
vide a fast and accurate way for segmentation of 3D data. The 3D
CNN segmentation approach is based on Cylinder3D, introduced in
[48]. This method utilizes the Spatially Sparse Convolution library
which builds upon sparse tensor representation to perform Fourier-
based convolutions. First, it converts the data into cylindrical data co-
ordinates. These are used to partition each point into its correspond-
ing voxel, and each voxel can enclose more than one point. A Simple
MLP module is used to increase the spatial information. The first part
of the network model utilizes a context module, followed by a two-
layer U-Net structure and a unique context module. The complete
module is visible in Figure 6. The model is adapted for binary classi-
fication and makes a single prediction per voxel. The 3D convolution
model is implemented with the BCE loss. Augmentation includes flip-
ping signs of an axis, rotating points, and applying noise with an
amplitude of ±5%. The optimizer used is Amsgrad, which is often
used for image-based networks. Amsgrad was used with a learning
rate of 0.0001.



20 methodology

Figure 6: Sparse 3D convolution model based on Cylinder3D.

5.6 bev based semantic segmentation approach

This approach is based on PolarNet [47], which uses polar coordi-
nates in a voxel-grid to generate a BEV 2D representation of the origi-
nal 3D data. The main concept comes from [44], by generating voxel
patches V ′

x,y for each voxel V. This means that V ′ approximately is
the BEV image. Z becomes encoded as additional channels. PolarNet
utilizes shared MLPs and max-pooling to accomplish its desired BEV
encoding. The output of their network is a prediction at each pixel
Cp ∈ ZZxXxY , which afterward are reshaped back into 3D voxels.
The module is shown in Figure 7 and uses a three-block encoder/de-
coder structure. Augmentation includes flipping signs of a random
axis and randomly rotating all points with an individual probability
of 0.25. The BEV model uses BCE loss and a dropout rate of 20%. The
optimizer used is Amsgrad with a learning rate of 0.0005.



5.7 evaluation of results 21

Figure 7: BEV model-based on PolarNet. K represents the kernel sizes, and
d represents the dilation size of the kernel. The model uses the
same padding as PolarNet [47].

5.7 evaluation of results

Evaluation is divided into two sections. Section 5.7.1 covers super-
vised evaluation metrics and section 5.7.2 covers the unsupervised
evaluation metrics.

5.7.1 Supervised evaluation

The evaluation of supervised learning is split into two parts. The
first one is quantitative evaluation, where we focus on the perfor-
mance over the entire dataset. The second part is qualitative eval-
uation, where the focus is on single-scan performance of the most
important methods.

5.7.1.1 Quantitative evaluation

Accuracy is a straightforward metric to use for classification tasks.
However, a massive problem with accuracy is its inability [1] to deal
with class imbalance, which this task requires. The most common
metrics used within the literature of statistical point cloud filtering
are Precision and Recall [7, 23, 27, 38], which are seen in equations
2 and 3, where TP, FP, FN represent true positive, false positive, and
false negative. Recall measures the ratio of correctly classified divided
by the total number of outliers. Precision measures the ratio of how



22 methodology

many points are correctly classified divided by the number of classi-
fied points. With this in mind, the F1 metric in equation 4 is adapted
as a metric to unify recall and precision in a single metric. Intersec-
tion over Union is a popular metric [36, 42, 48] often used in CNN to
measure the segmentation performance. However, to stay in line with
related works, we have selected to limit us to Precision, Recall, and
F1 as a part of the quantitative evaluation of the supervised filtering
methods. All these metrics are computed as follows:

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(4)

5.7.1.2 Qualitative evaluation

For the qualitative evaluation, the main focus will be on analyzing
the behavior of the prominent method found in the quantitative eval-
uation. This is done by visualizing and comparing the performance
of the best methods. Model evaluation will be based on:

• Their capability of removing snow.

• Their capability of preserving the environment.

5.7.2 Unsupervised evaluation

In this section we discuss how suitable metrics, used in other Cycle-
GAN papers [11, 24, 39], are and propose some of our own.

• Peak Signal Noise Ration (PSNR) is defined by equation 5

where MAXi is the peak value of the input and MSE is the
Mean Square Error. If MAXi is a known constant then the met-
ric can be exchanged with MSE for the purpose of comparison.
Since it requires a ground truth to be calculated it is less suitable
for unsupervised evaluation.

PSNR = 20 ∗ log(MAXi) − 10 ∗ log(MSE) (5)

• Structural SIMilarity (SSIM) measures mean, standard devia-
tion, and co-variance inside a N by N sized window. This mea-
sures many desired statistical properties but requires a ground
truth for comparison. We found that the metric can be mislead-
ing as it is evaluated in 2D space which translates very poorly
to 3D space performance. For an example of this, see Figures 8

and 9 in section 5.7.2.1. Artificial ground truth can be created
but the poor performance makes the metric unsuited.



5.7 evaluation of results 23

• Another metric is to measure the performance of downstream
tasks [24]. These tasks could be bounding-box problems, classi-
fication or anything that uses labeled data. A caveat here is that
the downstream task could be biased towards select features
and thus undermine promising models. To avoid this one must
use a large ensemble of tasks to get reasonable statistics. This
makes it less practically viable as a metric.

• The fitness of two GAN models can definitively be compared by
exchanging discriminators. The weaker models generator will
fail against the stronger models discriminator and vice versa.
The sign of the difference between the discriminator losses can
be used to make binary decisions of which model is the bet-
ter. Problems with this technique is that the models must share
input dimensions, it is only suited for comparing two models
and it requires trained models to be available at evaluation time.
This makes in in-practical for comparing with the state-of-the-
art but well suited for ablation studies of local models.

• As this report contains a study of masking filters, it would
be suitable for comparison of GAN models that have attention
models in them. This makes for trivial comparison but requires
the architecture to be altered! One should also note that a good
attention mask does not imply a good output and conversely, a
bad attention mask does not imply a bad output. Regardless of
output, if the attention mask is better than the state-of-the-art,
then the model is better at this specific task.

• Manual testing suffers from the obvious flaw of being man-
ual but offers the highest practicality for prototyping as well
as valuable intuition. Technically all evaluations are manual as
it requires a human to read the output, only difference is that
the data in this case is presented raw. Optimizing the presenta-
tion with the means presented in section 5.1 makes evaluation
a trivial task. To avoid biased evaluation, multiple individuals
can be used. The flaws with this approach is that the results are
not deterministic, the process is slow and since it is not a scalar
metric, it can not be used for direct comparison.

5.7.2.1 Unsupervised - Identity testing

A very simple way to test if a model is sound is to perform an identity
test. It is done by giving the model the desired output as input, to
which the model should learn the identity operator. The expected
effect on a GAN model is that the discriminator guesses randomly
and the generator loss becomes very low. This is, however, not always
the case. Both the generator and the discriminator can over or underfit
to this simple problem. Since the discriminator adversely affects the



24 methodology

generator, all four faults can be detected in the generator output. A
short description of the observed failures:

1. Generator overfit: Provides desired output but fails evaluation.

2. Generator underfit: Generates noisy output. Noise depends on
severity.

3. Discriminator overfit: Implies generator underfit, as the intended
fit can not be discriminated at all from the truth, and thus symp-
toms are the same.

4. Discriminator underfit: Similar to generator underfit but select
features are clearer than other and the loss function is stable at
a fixed value.

Figure 8: 2D visualization of the identity test performed on a GAN model
based on SalsaNext. Top image is the input and the bottom is the
identity test output. Images are very difficult to distinguish from
each other.

Figure 9: 3D visualization of identity test performed on a GAN model based
on SalsaNext. Left image shows the input and the right shows the
output. The right image contains clearly visible noise.

Figure 8 shows the 2D space output from a GAN adaptation of
SalsaNext [9]. The bottom image shows the output, which is near
identical to the input image above it. In Figure 9 the reverse projection
of the same image can be seen. The output shown on the right side
contains clearly visible noise. This result is interpreted as a generator
underfit, suggesting the architecture needs modifications. This is our
main evaluation method for unsupervised networks. Should a model
pass it, then another evaluation method can be considered.



5.7 evaluation of results 25

5.7.3 Basic Segmentation Model

To validate the functionality of the blocks used to build the unsu-
pervised networks, a simple supervised network is created based on
SalsaNext [9]. Blocks are extensively tested theoretically and practi-
cally to ensure that any network based on them would converge if
possible. An example of a theoretical flaw in SalsaNext [9] is that in
the resblocks, unlike the original ResNet paper [16], the residual is ac-
tivated with ReLU and then normalized prior to addition to the input.
This greatly restricts the possible values of the residual which is not
desired. Such operations should take place post addition. Example
of practical flaws are over-normalization and data bottlenecks. Batch
normalization between layers often improves networks but when it
does not, it does not. A few of the normalization layers were ham-
pering the network. There is also a data bottleneck, at which two
branches of the network compete to back-propagate through the same
embedding. Instead of having the branches compete, one branch can
favourably be given the original input instead. Resolving these issues
yielded a major improvement in performance, not only for segmenta-
tion but for our other tasks as well.

The updated blocks are shown in Figure 10. These blocks are used
in our generator, as seen in Figure 11, based on SalsaNext [9]. A trun-
cated version of the generator is adapted to function as a discrimina-
tor as shown in Figure 12.

Figure 10: Illustration of blocks used for all unsupervised models

5.7.4 Conventional CycleGAN

The trivial approach to filtering noisy LiDAR point clouds is to use a
conventional CycleGAN. Our proposed design is illustrated in Figure
13 which uses the generator and discriminator introduced in section
5.7.3. Initial testing revealed the discriminator learn features mainly
in the padded regions of the 2D projection. The need to exclude those



26 methodology

Figure 11: Design of the generator used in unsupervised models. Each block
is shown in greater detail in Figure 10

Figure 12: Design of the discriminator used in unsupervised models. Each
block, not explained in this figure, is shown in greater detail in
Figure 10

regions from the network is self-evident. This yielded convincing re-
sults in 2D, but when translated to 3D it does not resemble an accept-
able result, as seen in Figure 19.

The nature of the problem is many to one, that is many snowy
LiDAR point clouds can map to one clean representation of the same
point cloud. One may assume that a clean input is a snowy input
with minimum snow on it and thus should provide the same output.
This means the network must be capable of having the identity opera-
tor and thus must have an identity loss. Conversely, the clean images
map to many outputs, so it needs additional information when map-
ping in that direction. Wei et al. 2021[39] does this with an attention
mask and Yan et al. 2022[41] does this by generating a latent style
code. Our model does not do this and should fail.



5.7 evaluation of results 27

Figure 13: General structure of our CycleGAN network. Generator blocks
are marked with a G and follow the structure shown in Figure
11. Discriminator blocks are marked with a D and are shown in
detail in Figure 12

5.7.5 Masked GAN

Data padding is added during the projection step, which represent
pixels that are not present in the point cloud. A large section of the
2D projection contains data padding which must not be altered by the
network. Excluding it offers significant performance improvements.
The conclusion here is that we want to alter the input as little as
possible. Ideally, only the snow points are altered. We approach this
by performing segmentation and then generating a full 2D projection
but only altering points labelled as snow. In theory, the loss from the
generator can back-propagate through the segmenter to train it in an
unsupervised way.

A pitfall is using the same encoder for both generation and discrim-
ination, this leads to the discriminator sabotaging itself to harm the
generator through the encoder. Another unwise idea is to use a patch
GAN and only discriminate areas labeled to contain snow, this is a
caveat as the mask can label full images as non-snow leading to mali-
cious gradients, through division with small values, which is hard to
notice during runtime. In conclusion, it is very important to not leak
information explicitly or implicitly to the discriminator.

The key difference between generating and masking is the sigmoid
activation. If one does not apply an activation function or any output
constraints to the mask, then this approach is comparable to calling
the generator twice. Without an output constraint, this approach is
obsolete to simply increasing the complexity of the generator. We
add an L1 loss to the mask for clean images as it should be empty
for clean input. We also add identity loss and adversarial loss to the
generator loss, which back-propagate through the masking module.

Figure 14 shows a breakdown of the network. The generator block
G is based on the design as seen in Figure 11. The masking block
follows the same design but has a sigmoid activation, splits the im-



28 methodology

age into snow and non-snow, and then concatenates them along with
the mask. The discriminator block D can be seen in Figure 12. Mask
is expected to be empty for clean input, so the L1 loss is used for,
and only for, clean input. Generator and discriminator are set up in
conventional GAN style with BCE loss.

Figure 14: A breakdown of out masked GAN network. Block G is a gener-
ator block as shown in Figure 11. Block M is the same but has a
sigmoid activation and separates the input into separate channels.
Discriminator block D is as seen in Figure 12. First row show pro-
cedure for clean input while the second is for snowy input

.



6
R E S U LT S

This chapter is dedicated to presenting the result produced based
on the methodologies presented in chapter 5. Section 6.1 shows the
results of supervised filtering methods. Section 6.2 is dedicated to the
unsupervised results. Section 6.3 shows additional experiments of the
supervised task.

6.1 supervised filtering result

6.1.1 Quantitative evaluation

Here we present the quantitative evaluation results for the entire test
split. In Table 5, we can observe the performance of DSOR, DROR, LiOR,
PolarNet, Cylinder3D, WeatherNet, and SalsaNext against the result
presented by Kurup et al. [23] using the WADS dataset. Implemen-
tation of DSOR, DROR, LiOR, PolarNet, Cylinder3D, WeatherNet, and
SalsaNext are made according to the approaches presented in chap-
ters 3 and 5. We also present the result of combining the LiOR filter
with DSOR and DROR, which are our contribution to expand on statis-
tical filtering.

The result in Table 5 indicates that the best performing model is
Cylinder3D with an F1 score of 94.58%. However, PolarNet, Weath-
erNet, and SalsaNext also have a high F1 score and outperform the
statistical filters. The best result of statistical filtering is obtained by
combining LiOR & DSOR with an F1 score of 85.67%. The execution
time indicates that DNN are faster than transitional methods. It is es-
sential to note that statistical filters are tested on the CPU, while the
neural networks use GPU.

29



30 results

Table 5: Result of supervised filtering of snow points on the WADS test split
described in section 4.3. Precision, Recall, and F1 are measured in
% and the execution times are in milliseconds. Inference of DNN are
run on GPU, and statistical filters are run on CPU. Note that exe-
cution time for SalsaNext & WeatherNet excludes the KNN-based
post processing method.

Type Filter Model Recall Precision F1 Exec. time

Statistical original DSOR [23] 95.60 65.07 77.47 -

Statistical original DROR [23] 91.89 71.51 80.43 -

Statistical DROR 77.50 60.50 67.95 1069.4

Statistical DSOR 81.64 70.87 75.87 380.4

Statistical LIOR 92.51 65.65 76.79 427.7

Statistical LIOR&DROR 76.52 88.88 82.24 1452.4

Statistical LIOR&DSOR 80.79 91.18 85.67 801.6

Projection SalsaNext [9] 90.32 91.98 91.14 25.6

Projection WeatherNet [19] 85.89 95.39 90.39 53.0

Voxel Cylinder3D [48] 92.31 96.97 94.58 65.4

BEV PolarNet [47] 91.56 96.89 94.15 22.9

Another important part is to address why there is a difference be-
tween our DSOR and DROR result against the result reported in [23].
Our implementation is evaluated based on the test split described in
section 4.3. The results reported in [23] are based on a subset of the
dataset with 100 unknown scans. There is also a difference between
hyperparameters. The result presented by us is implemented to max-
imize the F1 score.

6.1.1.1 Ensemble Approaches

To expand the comparison, we investigate an ensemble approach[28,
6] between the methods to observe if they can complement each other
by combining their predictions. Three different types of ensemble
techniques are applied.

• Unanimous voting

• Majority voting

• Weighted voting

Unanimous voting requires all models to be unanimous that the point
is an outlier to classify it as one. Majority voting is a self-explanatory
ensemble. It simply takes the prediction value with the most votes.
However, majority voting has the drawback of only being suitable for
an uneven number of votes. Weighted voting multiplies each predic-
tion with weights and sums up all votes into the prediction value.



6.1 supervised filtering result 31

The weights used are shown in Table 6. Note that those weights are
defined heuristically.

In Table 7, the results of the ensemble between SalsaNext, Cylin-
der3D, PolarNet, and LiOR&DSOR are shown. Unanimous voting
only leads to a gain in precision at the cost of recall. This means
that we classify fewer points as snow and are confident that they
are actual outliers. The best result comes from majority voting and
weighted voting, with an identical result of 92.03% recall and 95.01%
F1 score. The result is equal because the LiOR&DSOR filter does not
change the result, and therefore, only the DNNs are determining out-
liers. We can remark that the ensemble approach does not increase
the recall but leads to a small increase in F1.

Table 6: Model-weights used in the weighted ensemble. Values are normal-
ized and based on their prediction score. Note that those weights
are defined heuristically.

Method Weight

PolarNet 0.26

Cylinder3D 0.26

SalsaNext 0.25

LiOR&DSOR 0.23

Table 7: Result of ensemble models. Results are presented in (%). The en-
semble indicate the type of combination that is used between meth-
ods.

Type Models Recall Precision F1

Unanimous voting
Cylinder3D

PolarNet
89.10 99.01 93.79

Unanimous voting
Cylinder3D

SalsaNext
89.69 98.71 93.99

Majority voting
Cylinder3D

SalsaNext

PolarNet

92.03 98.19 95.01

Weighted voting

Cylinder3D

SalsaNext

PolarNet

LIOR&DSOR

92.03 98.19 95.01



32 results

6.1.2 Qualitative evaluation

Below is the qualitative evaluation of the supervised comparison. Fig-
ures 15, 16, 17, and 18 present the compassion between LiOR&DSOR,
SalsaNext, PolarNet and Cylinder3D. In all figures, the left side in-
dicates the original labels. The middle image indicates the snow pre-
dicted by each model (white is outliers). The right side, however, cor-
responds to the final result of the filtering. Green represents true-
negative points (TN). White points are false-negatives points (FN)
that were not removed. Red points are false-positive points (FP) that
were incorrectly removed. Additional insight into qualitative evalua-
tion is provided in 1.

1 https://github.com/jabergius33/LiDAR-point-cloud/tree/main/gifs



6.1 supervised filtering result 33

6.1.2.1 LiOR&DSOR

According to Figure 15, LiOR&DSOR removes much of the snow in
the middle snow cloud. However, a substantial part of snow is still
present in the center section afterward. We can observe that the sta-
tistical filters do not remove any vital environmental object. However,
statistical filters do not remove most of the snow in the middle. It is
also noticeable that LiOR&DSOR filters out non-snow points (in the
air) with few nearby neighbors because of its naive approach.

Figure 15: Qualitative evaluation of LiOR&DSOR on scan 041570 in se-
quence 30. The left side contains the ground truth, and the middle
contains the prediction of LiOR&DSOR. The right side contains
true-negative as green, false-negatives as white, and false-positive
as red.



34 results

6.1.2.2 SalsaNext

In Figure 16 the result of SalsaNext is shown. SalsaNext removes most
of the snow in the center section. Just a small amount of snow is scat-
tered in the center section. We can observe that SalsaNext preserves
many environmental objects (e.g., cars and signs). However, we can
see that SalsaNext has a problem with incorrectly classifying partic-
ular objects as snow. This is visible in the right-side image, where a
big part of a wall/building is classified as snow.

Figure 16: Qualitative evaluation of SalsaNext on scan 041570 in sequence
30. The left side contains the ground truth, the middle contains
the predictions of SalsaNext. The right side contains true-negative
as green, false-negatives as white, and false-positive as red.



6.1 supervised filtering result 35

6.1.2.3 PolarNet

Figure 17 shows the result of PolarNet. We can observe that PolarNet
removes most of the snow in the center section. The visual result
indicates that PolarNet is equally or slightly better than SalsaNext
at removing the snow. PolarNet preserves almost all environmental
objects and does not have any distinct misclassifications. Both car,
wall, and sign objects are not classified as snow (preserved).

Figure 17: Qualitative evaluation of PolarNet on scan 041570 in sequence 30.
The left side contains the ground truth, the middle contains the
prediction of PolarNet. The right side indicate true-negative as
green, false-negatives as white, and false-positive as red.



36 results

6.1.2.4 Cylinder3D

In Figure 18, we observe the result of Cylinder3D. The Cylinder3D
model can remove nearly all snow points in the center. This part looks
very clean, and only a few points remain as shown in the right-side
image. It is also visible that a Cylinder3D removed most of the points
in the middle section even if they are not labeled as snow. Cylinder3D
preserves the environmental objects, such as cars, walls, and signs
and does not have any distinct misclassifications.

Figure 18: Qualitative evaluation of Cylinder3D on scan 041570 in sequence
30. The left side contains the ground truth, the middle con-
tains the prediction of Cylinder3D. The right side indicate true-
negative as green, false-negatives as white, and false-positive as
red.



6.2 unsupervised filtering models 37

6.2 unsupervised filtering models

Here we present model ideas and discuss their result. The models
are presented in chronological order, meaning the conclusions from
one result apply to subsequent models. The identity test discussed in
section 5.7.2.1 is the main test for these models. The first model in
section 5.7.3 is technically not unsupervised but has high relevance
to the following works as it forms the core component.

6.2.1 Conventional CycleGAN

In section 5.7.4 we theorise our model will fail. To confirm our method
does not work, an identity test was used. The resulting images can
easily be discriminated by human eyes, see Figure 19. Although su-
perfluent, we also provide results of mapping from snowy to clean
point cloud in Figure 20.

Figure 19: Result of an identity test on CycleGAN. Colors represent the re-
mission values. Left view shows input point cloud, middle view
shows the output and right view shows the reconstructed input

6.2.2 Masked GAN

With the method mentioned in section 5.7.5, solving the identity test
is trivial as the mask learns a zero bias. The results for snowy-to-clean
mapping, seen in Figure 21, show that the mask fails to segment the
snow. Labeling too many things as snow is acceptable, it is not meant
to solve the problem but to reduce it. However, it labels a portion
of the snow as non-snow. This is an unacceptable result. The mask
is produced by the same segmenter that scored over 99% accuracy
for supervised learning. The main difference is that the gradient has
passed through our generator.

Poor generator performance implies poor masking performance,
which implies poor generator. We get a positive feedback loop that de-



38 results

Figure 20: Results of mapping from snowy to clean data. Colors represent
the remission values. Left view shows the input data where colors
represent remission values, middle view shows the output and
right view shows the reconstructed input.

Figure 21: Result of de-snowing point clouds with masked GAN. Left view
shows input point cloud, color represents the remission values.
Middle view shows the generated mask, here color represent
probability of snow. Note that some snow points have lower val-
ues than the walls. Right view shows the output, where color
represent remission values.

stabilizes the network. The generator has to converge sharply enough
to break the loop, but if it does, then the mask would be obsolete
as a tool to improve convergence. We also notice that a too high L1

loss on the mask eventually leads to the mask snapping to zero, at
which point the network stops converging. In conclusion, masking
before generating can be beneficial but training it in an unsupervised
manner costs too much to warrant the benefits.

6.3 supervised filtering experiments

6.3.1 Hardware

The hardware components used for the supervised comparison and
experiments is presented below:



6.3 supervised filtering experiments 39

• GPU: GeForce RTX 2080 Ti

• CPU: Intel Core i9-9900X (4.4GHz)

• RAM: 64Gb

6.3.2 SalsaNext

The loss function of the SalsaNext model is presented in Figure 22.
The training took place over 400 epochs, with a batch size of 4, accord-
ing to the setup in chapter 5. In Table 8, the result of SalsaNext with
and without augmentation is shown. The result indicates that there is
not a marginal difference between using and not using augmentation
for the projection-based approach. Table 9 shows the result of using
2 and 3 encode/decoder blocks in SalsaNext model. We opted to use
a two-layer U-net structure as it is more lightweight and performs
better. In Table 10 we can observe that the best result was obtained
when using a five-channel input. Five-channel input was used as it
gave the best performance.

Figure 22: Loss function for the SalsaNext based model, trained for 400

epochs.

Table 8: Performance of SalsaNext with and without augmentation. Results
are presented in (%).

Augmentation Recall Precision F1

Yes 90.32 91.98 91.14

No 90.45 91.90 91.17



40 results

Table 9: Comparison of two and three encode/decoder blocks in SalsaNext.

Encode/Decoder Recall(%) Precision(%) F1(%) Parameters

3 Blocks 90.51 90.92 90.72 4,408,225

2 Blocks 90.31 91.99 91.14 1,119,873

Table 10: Result of using two (range and intensity) compared to five input
channels for SalsaNext. Dropout was removed when using two
input channels.

Input channels Recall Precision F1

5 91.99 90.31 91.14

2 91.80 87.29 89.49

6.3.3 Cylinder3D

The loss function for Cylinder3D can be observed in the Figure 23.
The training took place over 200 epochs, with a batch size of 2 and
according to the setup in chapter 5. In Table 11, the performance of
Cylinder3D with and without augmentation is shown. It is noticeable
that augmentation had a positive impact on the Cylinder3D result. In
Table 12 the performance between using two and three encode/de-
coder blocks in Cylinder3D is visible. We used the two-layer U-net
structure as it gave an increase in performance.

Figure 23: Loss function for Cylinder3D model trained for 200 epochs.



6.3 supervised filtering experiments 41

Table 11: Comparison between Cylinder3D with and without augmentation.
Results are presented in (%).

Augmentation Recall Precision F1

Yes 92.31 96.97 94.58

No 92.91 93.73 93.32

Table 12: Comparison of two and three encode/decoder blocks in Cylin-
der3D architecture. Results are presented in (%).

Encode/Decoder Recall Precision F1

3 Blocks 92.20 95.28 93.71

2 Blocks 92.31 96.97 94.58

6.3.4 PolarNet

The loss function for PolarNet can be observed in the Figure 24. The
training took place over 200 epochs, with a batch size of 2 and accord-
ing to the setup in chapter 5. In Table 13 the result of using two and
three encode/decoder blocks in the architecture. Three-layer U-net
structure was chosen because it performed better.

Figure 24: Loss function for the PolarNet model trained for 200 epochs.



42 results

Table 13: Comparison of two and three encode/decoder blocks in PolarNet
architecture.

Encode/Decoder Recall(%) Precision(%) F1(%) Parameters

3 Blocks 91.56 96.89 94.15 3,380,960

2 Blocks 92.12 95.03 93.55 871,136



7
D I S C U S S I O N

This chapter is declared to discuss, analyze, and interpret the result
presented in the previous chapter.

7.1 supervised results

In the result section, we presented a comparison between the stan-
dard statistical filters and DNNs. All DNN models show a promising
result of reaching above 90% in F1. The 3D CNN approach, based on
Cylinder3D, gave us the best result and achieved a recall of 92.31%
and precision of 96.97%. This means that Cylinder3D removed 92.31%
of snow with a 96.97% preciseness. We confirm that 3D CNNs are
slightly better at processing 3D environmental information, includ-
ing noisy environments. However, a drawback of Cylinder3D is that it
requires additional inference time. Both WeatherNet, SalsaNext, and
PolarNet receive a slightly lower recall of 85.89%, 90.32%, and 91.56%,
respectively. Based on Table 5 both SalsaNext and PolarNet perform
similarly in recall (only a 1.2% difference). However, we can see a
clear difference in the precision score. SalsaNext received a score of
91.98%, and PolarNet received 96.89%. This indicates that SalsaNext
is worse at containing environmental features, which is supported in
Figure 16, where SalsaNext incorrectly classifies a large proportion
of the building/wall as snow (outliers). The second projection model
based on WeatherNet has a higher precision score than SalsaNext.
However, WeatherNet filters out less snow, which naturally comes
with being more precise. We conclude that the projection-based ap-
proach that relies on the KNN post-process is a sub-optimal way of
dealing with snow in LiDAR data.

7.1.1 Labeling

We previously mentioned that the dataset contains mislabeled points.
In Figures 16, 17, and 18, we can observe that none of the networks
incorrectly classifies the car as snow, which according to the ground
truth, is falling snow. We can conclude that all DNN models learn
that cars do not belong to falling snow, even if they are sometimes
mislabeled. This demonstrates that the training data contains enough
accurate information to identify that car objects do not relate to snow
(outlier). Another example is the mislabeled traffic signs and trees
in the background. Based on the result of Cylinder3D in Figure 18

we can also observe numerous points that we would assume to be

43



44 discussion

falling snow in the middle section of the point cloud. However, ac-
cording to the labels in the dataset, these are non-snow objects (red
points). The question here becomes: what are they? Are they merely
incorrect labeled points that should be labeled as snow? Or are they
part of the car that captures the LiDAR data? It is clear to say that these
inconsistencies harm the evaluation result. Is it desirable to receive a
score of 100%? This would, in fact, mean removing objects that we
have learned are incorrectly labeled (cars, buildings, and signs). The
main conclusion from this is that the labeling of noise in LiDAR points
clouds can have a noticeable impact on the result. Our hope to im-
prove the supervised comparison involves using a dataset that has
been labeled more carefully.

7.1.2 Ensemble result

In the result section in Table 7, we have presented an ensemble of
different methods. If our main target is to filter out as much snow as
possible (e.g., higher recall), we conclude that our ensemble does not
improve the performance. If we value increasing the precision score,
we can confirm that our ensemble method works effectively. The best
performance came from both majority voting and weighted voting.
Both reached an F1 score of 95%, which is an increase of 0.5 from
the result of Cylinder3D. We investigated different values for the
weighted voting approach but did not uncover an improved result.
The identical result of majority voting and weighted voting indicates
that statistical filters did not provide helpful information to improve
the ensemble’s performance. Another essential factor to mention is
the training. All neural networks require training to learn local spa-
tial features. This is a time-consuming task that requires time and
engineering knowledge. The average training time for our network
was approximately 22 hours. With this in mind and only getting a
tiny increase in performance, we would state that we do not see a
justifiable reason for ensemble multiple DNN models with the aim of
improving the performance.

7.2 unsupervised

In short, none of the networks solved the problem. All models have
flaws or pitfalls in them. Most of them failed already on the draw-
ing board. One such honorable mention is discussed in section 7.2.1.
Comparing these models based on theoretical soundness is difficult.
We believe the conventional CycleGAN has the highest potential of all
models. Looking at Figure 20 we notice that, although noisy output,
the snow has been removed. Also, note that the snow is not restored
in the reconstructed input, this is consistent with the flaws pointed
out.



7.2 unsupervised 45

A trivial way to pass our identity test is to add the model’s output
to the input. Instead of learning the identity operator, the model can
simply output nothing and then add it to the input to solve the prob-
lem. Whether or not such a modification is theoretically sound is up
for debate, but residual models already do this [8, 41]. In general, the
more trivial a solution is, the better it is. We conclude that residual
models are state-of-the-art for de-noising.

7.2.1 Domain adaptation

Let us discuss a failed approach. The data can be seen as belonging
to either a clean or snowy domain, as well as the intersection of those
domains. The core principle behind CycleGAN is that such an inter-
section exists, else the reverse transformation would not be possible.
There is a clear interest in the intersection domain. Du et al. 2020 [11]
use domain adaptation to obtain this domain.

One approach is to encode to three domains: snowy, clean, and in-
tersection domain. The intersection can be obtained through domain
adaptation. One could think that snowy and clean domains are ob-
tainable through the same discriminator, but this is not the case. This
is because the statement (S∩C) ′ ⇒ ((S∪C) \ (S∩C)) is false, where
S stands for snowy and C for Clean domain. Let us assume one can
discriminate the domain (S∪C) \ (S∩C) this way, how does one gen-
erate this information? S ∩ C can not be discriminated, so a subset
of it will always be present in all cases, which means the desired do-
main can not be generated, which in turn means discriminating it is
pointless. More than one discriminator is needed.

In theory, the S∪C domain contains all the information required to
reconstruct the image regardless of which domain it belongs to. There
should be no need to use two ad-hoc generators to map to specific
domains, so one generator should be enough. This theory holds, but
it gives a larger output space for the generator, which is sub-optimal.
Also, if one wants to keep the output in a specific domain, then ad-
hoc discriminators are needed, which would mismatch the output
space of the single generalized generator. More than one generator is
strongly recommended.

A problem with the constraints of domain adaptation is that im-
ages are preferably processed with a U-net design that has skip con-
nections. The domain adaptation constraints do not and should not
apply to the skip connections. These are not deep enough in the net-
work to separate the domain information. If they were deep enough,
it would obsolete subsequent layers. In conclusion, domain adapta-
tion constraints must apply post skip connections.

The inference is made by having the encoded point clouds swap
their intersection domains and then get reconstructed. During infer-
ence, there is no clean domain available. So the clean domain is repre-



46 discussion

sented by a fixed value. However, if this is fixed, then it could simply
be a bias in the generator.

Since domain adaptation is based on the assumption that domain
information can be separated, it means the intersection domain is al-
ways obtainable. Also, the clean domain information is always avail-
able as a bias. This means any network able to produce the intersec-
tion domain can also produce a clean output, which obsoletes the
need for domain adaptation in the first place. Domain adaptation
should not be used for "many to one" problems.

Using these observations, we propose a CycleGAN structure that
suffers none of the flaws pointed out. Our network is shown in figure
25, the key difference is the use of identity loss and the transfer of a
style encoding. Note that the design has a high resemblance to the
one proposed in [41].

Figure 25: Suggested model for LiDAR de-snowing. Circles symbolise do-
mains and squares are networks. The letters S, C and LS stands
for snow, clean and latent domain, respectively. G and D stands
for generator and discriminator network, respectively.

7.3 sustainability considerations

With regards to autonomous vehicles, there are many potentials for
the future. However, in parallel with their growth potential, there
is a growing importance of conducting research focusing on an eth-
ical and sustainable perspective. Security and reliability are crucial
aspects regarding de-noising algorithms used within autonomous ve-
hicles. Procedures such as updating and debugging algorithms and
DNN models are vital for sustainability. How can software be main-
tained, improved, and updated based on a reliable perspective? This
brings forward new questions regarding how these models perform
on unseen data from new environments. Is it possible to use our net-
works to filter out snow in new environments? Can our networks
adapt to unseen data and still filter out snow? Or will autonomous
vehicles need to halt and update all their subsystems to enter a new
region? These are open-ended questions that cannot be answered in
this thesis. However, we know that security and reliability will have



7.3 sustainability considerations 47

enormous importance for all systems concerning the development
and deployment of autonomous vehicles.





8
C O N C L U S I O N

8.1 supervised filtering methods

We have presented a comparison between DNN-based and statisti-
cal filtering techniques, consisting of state-of-the-art filters of DROR,
DSOR and LiOR against segmentation-based DNN approaches. We ex-
panded on statistical filtering by presenting two new filters, by com-
bining LiOR & DSOR and LiOR & DROR. We conclude that DNNs have a
marginal increase in performance compared to statistical filters and
have the potential of becoming the state-of-the-art for filtering ad-
verse weather conditions in LiDAR data. All of the DNN models re-
ceived an F1 score above 90%. The best result came from the 3D
CNN approach based on Cylinder3D, which removed 92.3% of all
snow. All 2D CNNs got a slightly lower result with a recall between
85.9-91.5%. We can confirm that SalsaNext and WeatherNet received
a worse score as a bi-product of the KNN post-processing, which we
deem sub-optimal for noisy data.

Our investigation of the ensemble approach concluded that an en-
semble leads to an increase in precision. The ensemble approach
reached our highest F1 score of 95.01%, compared to 94.58% for Cylin-
der3D. However, the ensemble did not result in a higher recall. We
deem this necessary to enhance the classification performance. Our
conclusion for the ensemble approach is that it is a sub-optimal solu-
tion for increasing the result and has the drawback of being slower
and more time-consuming.

8.2 unsupervised filtering methods

Out of the approaches attempted, none succeeded. Analyzing these
models allows us to narrow down what approaches are viable. Con-
sider the following assumptions:

1. Solution exists,

2. Clean domains style encoding is constant, and

3. Domains are separable.

We conclude that there exists a generator that can map from snowy
to clean domain. No additional information or processing is needed.
This means our CycleGAN model should have been able to produce
clean output. If that is true, then the generator lacks the capacity
required to solve the problem.

49



50 conclusion

We conclude that:

• Decomposing the snowy input into a style encoding is a require-
ment.

• Decomposing the clean input into a style encoding is not a re-
quirement.

• Residual approach is preferred.

• Unsupervised masking is possible but too expensive.

• Generation of clean output does not benefit from domain adap-
tation.

• Our proposed generator lack the capacity to solve the problem.

We also propose a model that agrees with our conclusions, see Fig-
ure 25. Model is based on vanilla CycleGAN but features identity loss
and style encoding consistency loss.

8.3 future work

In this section, we discuss future works of supervised and unsuper-
vised learning. We also mention optimizing solutions through itera-
tive filtering.

Supervised

One potential for future works could be to look into few-shot learning
[12]. Few-shot learning is an excellent approach that works for mini-
mal amounts of training data. One step would therefore be to re-label
a minority of data samples in WADS to guarantee that the labeling is
correct. The second step would be to train a few-shot learning net-
work and investigate the performance of a small amount of WADS

data.

Unsupervised

Asserting the functionality of the components used to build the archi-
tecture is important. We propose that a vanilla GAN is built to solve
this problem. However, the goal is to cause a mode collapse. After
that, one should switch over to CycleGAN and address domain shift,
which should resolve the mode collapse. Snowy images must be de-
composed into a style encoding. Adding an L1 constraint to the style
encoding is a good way to reduce the domain shift.

The proposed design for the CycleGAN is shown in Figure 25. This
has a high resemblance to the model from a paper by Yan et al. 2022

[41] as it agrees with all our conclusions.



8.3 future work 51

Iterative filtering

One potential direction for future works is investigating how iterative
filtering can be used to improve statistical filtering. Chen et al. 2022

[8] state that solving de-noising in a single iteration is "non-trivial".
This suggests that iterative approaches should be better in general
cases. We made a simple test based on statistical filtering to disprove
this, but the theory seems sound. One should further investigate the
benefits and drawbacks of this approach. The proposed method is to
call a network multiple times and pass the latent representation of all
iterations through an LSTM module to predict the output of infinite
recursion.

Dataset

One leading direction for future work comes from using more data.
However, one core issue of WADS is that there exists incorrect labeling.
Incorrect labeling is a severe problem for the evaluation and training
of the networks. Therefore one main hope for future work would be
to use an entirely new dataset. First of all, it would be wise to evaluate
the correctness of WADS with the means of using another dataset. Us-
ing an entirely new dataset would bring forward additional research
questions. For example, can transfer learning be used to transfer the
knowledge obtained on WADS to classify snow from a new region?
Would the networks have to be retrained or updated when crossing
into a new region or country? If so, how could this take place safely
and reliably way? These are important questions that will impact the
deployment of autonomous vehicles.





B I B L I O G R A P H Y

[1] Shaza M Abd Elrahman and Ajith Abraham. A review of class
imbalance problem. Journal of Network and Innovative Computing,
1(2013):332–340, 2013.

[2] Gopalakrishna Adusumilli. LiDAR and its capability in self-
driving vehicles. https://towardsdatascience.com/lidar-and-
its-capability-in-self-driving-vehicles-1514eb8365ca,
2022. Accessed: 2022-04-14.

[3] Eren Erdal Aksoy, Saimir Baci, and Selcuk Cavdar. Salsanet:
Fast road and vehicle segmentation in lidar point clouds for au-
tonomous driving. In 2020 IEEE intelligent vehicles symposium
(IV), pages 926–932. IEEE, 2020.

[4] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven
Behnke, Cyrill Stachniss, and Jurgen Gall. Semantickitti: A
dataset for semantic scene understanding of lidar sequences. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9297–9307, 2019.

[5] Mario Bijelic, Tobias Gruber, and Werner Ritter. A benchmark
for lidar sensors in fog: Is detection breaking down? In 2018
IEEE Intelligent Vehicles Symposium (IV), pages 760–767, 2018. doi:
10.1109/IVS.2018.8500543.

[6] Jason Brownlee. How to Combine Predictions for Ensem-
ble Learning. https://machinelearningmastery.com/combine-

predictions-for-ensemble-learning/, April 2021. Accessed:
2022-04-26.

[7] Nicholas Charron, Stephen Phillips, and Steven L Waslander. De-
noising of lidar point clouds corrupted by snowfall. In 2018 15th
Conference on Computer and Robot Vision (CRV), pages 254–261.
IEEE, 2018.

[8] Honghua Chen, Zeyong Wei, Xianzhi Li, Yabin Xu, Mingqiang
Wei, and Jun Wang. Repcd-net: Feature-aware recurrent point
cloud denoising network. International Journal of Computer Vision,
pages 1–15, 2022.

[9] Tiago Cortinhal, G. S. Tzelepis, and Eren Erdal Aksoy. Sal-
sanext: Fast semantic segmentation of lidar point clouds for au-
tonomous driving. ArXiv, abs/2003.03653, 2020.

53

https://towardsdatascience.com/lidar-and-its-capability-in-self-driving-vehicles-1514eb8365ca
https://towardsdatascience.com/lidar-and-its-capability-in-self-driving-vehicles-1514eb8365ca
https://machinelearningmastery.com/combine-predictions-for-ensemble-learning/
https://machinelearningmastery.com/combine-predictions-for-ensemble-learning/


54 bibliography

[10] Tiago Cortinhal, Fatih Kurnaz, and Eren Erdal Aksoy. Semantics-
aware multi-modal domain translation: From lidar point clouds
to panoramic color images. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3032–3048, 2021.

[11] Wenchao Du, Hu Chen, and Hongyu Yang. Learning invariant
representation for unsupervised image restoration. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14483–14492, 2020.

[12] Dr. Michael J. Garbade. Understanding few-shot learn-
ing in machine learning. https://medium.com/quick-

code/understanding-few-shot-learning-in-machine-

learning-bede251a0f67, 2018. Accessed: 2022-05-13.

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready
for autonomous driving? the kitti vision benchmark suite. In
2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 3354–3361, 2012. doi: 10.1109/CVPR.2012.6248074.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

[15] Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 9224–9232, 2018.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–
778, 2016.

[17] Jeff Hecht. Lidar for self-driving cars. Optics & Photonics News,
29:26–33, 2018.

[18] Robin Heinzler, Philipp Schindler, Jürgen Seekircher, Werner
Ritter, and Wilhelm Stork. Weather Influence and Classifi-
cation with Automotive Lidar Sensors. arXiv e-prints, art.
arXiv:1906.07675, June 2019.

[19] Robin Heinzler, Florian Piewak, Philipp Schindler, and Wil-
helm Stork. Cnn-based lidar point cloud de-noising in adverse
weather. IEEE Robotics and Automation Letters, 5(2):2514–2521,
2020. doi: 10.1109/LRA.2020.2972865.

[20] Fangzhou Hong, Hui Zhou, Xinge Zhu, Hongsheng Li, and Zi-
wei Liu. Lidar-based panoptic segmentation via dynamic shift-
ing network. arXiv preprint arXiv:2011.11964, 2020.

https://medium.com/quick-code/understanding-few-shot-learning-in-machine-learning-bede251a0f67
https://medium.com/quick-code/understanding-few-shot-learning-in-machine-learning-bede251a0f67
https://medium.com/quick-code/understanding-few-shot-learning-in-machine-learning-bede251a0f67


bibliography 55

[21] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo,
Zhihua Wang, Niki Trigoni, and Andrew Markham. Randla-
net: Efficient semantic segmentation of large-scale point clouds.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

[22] Anant Jain. Breaking neural networks with adversarial
attacks. https://towardsdatascience.com/breaking-neural-

networks-with-adversarial-attacks-f4290a9a45aa, 2019. Ac-
cessed: 2022-06-09.

[23] Akhil Kurup and Jeremy Bos. Dsor: A scalable statistical filter for
removing falling snow from lidar point clouds in severe winter
weather. arXiv preprint arXiv:2109.07078, 2021.

[24] Siyuan Li, Iago Breno Araujo, Wenqi Ren, Zhangyang Wang,
Eric K Tokuda, Roberto Hirata Junior, Roberto Cesar-Junior, Ji-
awan Zhang, Xiaojie Guo, and Xiaochun Cao. Single image de-
raining: A comprehensive benchmark analysis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 3838–3847, 2019.

[25] Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A Chapman,
Dongpu Cao, and Jonathan Li. Deep learning for lidar point
clouds in autonomous driving: A review. IEEE Transactions on
Neural Networks and Learning Systems, 32(8):3412–3432, 2020.

[26] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss.
Rangenet ++: Fast and accurate lidar semantic segmentation. In
2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4213–4220, 2019. doi: 10.1109/IROS40897.
2019.8967762.

[27] Ji-Il Park, Jihyuk Park, and Kyung-Soo Kim. Fast and accu-
rate desnowing algorithm for lidar point clouds. IEEE Access,
8:160202–160212, 2020.

[28] Hamid Parvin, Hamid Alinejad-Rokny, and Sajad Parvin. A clas-
sifier ensemble of binary classifier ensembles. International Jour-
nal of Learning Management Systems, 1(2):1–11, 2013.

[29] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652–660, 2017.

[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas.
Pointnet++: Deep hierarchical feature learning on point sets in a
metric space. Advances in neural information processing systems, 30,
2017.

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa
https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa


56 bibliography

[31] Santiago Royo and Maria Ballesta-Garcia. An overview of lidar
imaging systems for autonomous vehicles. Applied Sciences, 9(19):
4093, 2019.

[32] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud
library (pcl). In 2011 IEEE International Conference on Robotics and
Automation, pages 1–4, 2011. doi: 10.1109/ICRA.2011.5980567.

[33] Stefan Schubert, Peer Neubert, Johannes Pöschmann, and Peter
Protzel. Circular convolutional neural networks for panoramic
images and laser data. In 2019 IEEE Intelligent Vehicles Symposium
(IV), pages 653–660, 2019. doi: 10.1109/IVS.2019.8813862.

[34] Vipin Sharma. KITTI Coordinate Transformations a guide on
how to navigate between different sensor coordinate systems
of kitti. https://towardsdatascience.com/kitti-coordinate-

transformations-125094cd42fb, 2021. Accessed: 2022-03-08.

[35] Kirthi Shankar Sivamani. The unusual effectiveness of ad-
versarial attacks. https://medium.com/@smkirthishankar/

the-unusual-effectiveness-of-adversarial-attacks-

e1314d0fa4d3, 2019. Accessed: 2022-06-09.

[36] Haotian* Tang, Zhijian* Liu, Shengyu Zhao, Yujun Lin, Ji Lin,
Hanrui Wang, and Song Han. Searching efficient 3d architec-
tures with sparse point-voxel convolution. In European Conference
on Computer Vision, 2020.

[37] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beat-
riz Marcotegui, François Goulette, and Leonidas J. Guibas. Kp-
conv: Flexible and deformable convolution for point clouds. Pro-
ceedings of the IEEE International Conference on Computer Vision,
2019.

[38] Weiqi Wang, Xiong You, Lingyu Chen, Jiangpeng Tian, Fen Tang,
and Lantian Zhang. A scalable and accurate de-snowing algo-
rithm for lidar point clouds in winter. Remote Sensing, 14(6):1468,
2022.

[39] Yanyan Wei, Zhao Zhang, Yang Wang, Mingliang Xu, Yi Yang,
Shuicheng Yan, and Meng Wang. Deraincyclegan: Rain atten-
tive cyclegan for single image deraining and rainmaking. IEEE
Transactions on Image Processing, 30:4788–4801, 2021.

[40] Jianqing Wu, Hao Xu, Yuan Tian, Rendong Pi, and Rui Yue. Ve-
hicle detection under adverse weather from roadside lidar data.
Sensors, 20(12):3433, 2020.

[41] Xu Yan and Yuan Ren Loke. Raingan: Unsupervised raindrop
removal via decomposition and composition. In Proceedings of

https://towardsdatascience.com/kitti-coordinate-transformations-125094cd42fb
https://towardsdatascience.com/kitti-coordinate-transformations-125094cd42fb
https://medium.com/@smkirthishankar/the-unusual-effectiveness-of-adversarial-attacks-e1314d0fa4d3
https://medium.com/@smkirthishankar/the-unusual-effectiveness-of-adversarial-attacks-e1314d0fa4d3
https://medium.com/@smkirthishankar/the-unusual-effectiveness-of-adversarial-attacks-e1314d0fa4d3


bibliography 57

the IEEE/CVF Winter Conference on Applications of Computer Vision,
pages 14–23, 2022.

[42] Xu Yan, Jiantao Gao, Jie Li, Ruimao Zhang, Zhen Li, Rui Huang,
and Shuguang Cui. Sparse single sweep lidar point cloud seg-
mentation via learning contextual shape priors from scene com-
pletion. CoRR, abs/2012.03762, 2020. URL https://arxiv.org/

abs/2012.03762.

[43] Tao Yang, You Li, Cheng Zhao, Dexin Yao, Guanyin Chen,
Li Sun, Tomas Krajnik, and Zhi Yan. 3d tof lidar in mobile
robotics: A review. arXiv preprint arXiv:2202.11025, 2022.

[44] Chris Zhang, Wenjie Luo, and Raquel Urtasun. Efficient convolu-
tions for real-time semantic segmentation of 3d point clouds. In
2018 International Conference on 3D Vision (3DV), pages 399–408,
2018. doi: 10.1109/3DV.2018.00053.

[45] Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Zerong
Xi, Boqing Gong, and Hassan Foroosh. Polarnet: An improved
grid representation for online lidar point clouds semantic seg-
mentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9601–9610, 2020.

[46] Zhiliang Zhou. How does sparse convolution work
quite different convolution concept and gpu calculation
schema. https://towardsdatascience.com/how-does-sparse-

convolution-work-3257a0a8fd1, 2020. Accessed: 2022-04-24.

[47] Zixiang Zhou, Yang Zhang, and Hassan Foroosh. Panoptic-
polarnet: Proposal-free lidar point cloud panoptic segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[48] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin Ma,
Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and asym-
metrical 3d convolution networks for lidar segmentation. arXiv
preprint arXiv:2011.10033, 2020.

https://arxiv.org/abs/2012.03762
https://arxiv.org/abs/2012.03762
https://towardsdatascience.com/how-does-sparse-convolution-work-3257a0a8fd1
https://towardsdatascience.com/how-does-sparse-convolution-work-3257a0a8fd1


58 bibliography


