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Abstract: Machine Activity Recognition (MAR) can be used to monitor manufacturing processes and
find bottlenecks and potential for improvement in production. Several interesting results on MAR
techniques have been produced in the last decade, but mostly on construction equipment. Forklift
trucks, which are ubiquitous and highly important industrial machines, have been missing from
the MAR research. This paper presents a data-driven method for forklift activity recognition that
uses Controller Area Network (CAN) signals and semi-supervised learning (SSL). The SSL enables
the utilization of large quantities of unlabeled operation data to build better classifiers; after a two-
step post-processing, the recognition results achieve balanced accuracy of 88% for driving activities
and 95% for load-handling activities on a hold-out data set. In terms of the Matthews correlation
coefficient for five activity classes, the final score is 0.82, which is equal to the recognition results of
two non-domain experts who use videos of the activities. A particular success is that context can
be used to capture the transport of small weight loads that are not detected by the forklift’s built-in
weight sensor.

Keywords: machine activity recognition; semi-supervised learning; learning representation; CAN
signals; forklifts

1. Introduction

The forklift truck is a key piece of equipment in modern industry, and it is hard to
imagine a production facility, warehouse, or logistics center without it. Each year, over one
million new forklift trucks are sold worldwide [1]. The central role the forklift truck plays
in industrial operation means that it is desirable to measure the activities of forklifts,
to be able to monitor, analyze and improve the design of the material handling operation.
However, forklift operators can perform their tasks in different ways, and detecting what
operation is being performed is not trivial. Machine activity recognition (MAR) is a
developing research field devoted to data-driven methods for recognizing the activities of
equipment. The research in MAR is almost exclusively devoted to construction equipment
(excavators, dumpers, haulers, etc.) and using external sensors such as accelerometers,
microphones, and cameras. Forklift trucks have received far too little attention, considering
their abundance in manufacturing operations. This is possibly because forklift trucks are
considered “unrecognizable” equipment [2] with the external sensor approach due to their
silent operation and the lack of highly articulated parts.

This paper presents an alternative approach to activity recognition for forklift trucks:
one that does not build on external sensors but instead uses the internal Controller Area
Network (CAN) data. The CAN bus protocol is an industrial standard for communi-
cation networks on vehicles. Since essentially every forklift truck manufacturer today
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uses CAN for internal communication, the approach presented in this paper should be
widely applicable.

In the proposed approach, both labeled “laboratory” data and unlabeled real field
operation data are used to design the activity recognition method. This is different from the
typical MAR setup, which is to use supervised learning and data collected on 1–2 vehicles
in one location, with a limited number of operators (often just one) who perform repeated
tasks. Semi-supervised learning is employed to make use of the unlabeled field operation
data and construct a classifier with higher accuracy than that solely from the small labeled
“laboratory” data set. Combining this with expert knowledge in post-processing results in a
high accuracy activity recognition system, as measured on a labeled out-of-sample data set.

The three contributions of this paper are as follows: (1) the first study on MAR for
forklift trucks using CAN data, (2) the first demonstration of using unlabeled data with
semi-supervised learning to build better classifiers in this domain, and (3) demonstrating
successful capture of small weight loads that are not detected by the onboard load sensor
but correctly identified from the activity context.

2. Literature Review
2.1. Machine Activity Recognition

Past MAR research has mostly focused on recognizing the activities of construction
equipment. For example, the first attempt at using machine learning to recognize machine
activities from sensor data was by Vachkov et al. [3], who used onboard data and self-
organizing maps to recognize the actions of an excavator. They reported a recognition
accuracy of about 93% for six operational modes: loading bucket, moving load to a nearby truck,
unloading bucket, return to the initial position, move bucket for leveling the load on the full truck,
and idling.

Several papers on construction equipment activity recognition have been published in
the last decade. These are reviewed by Sherafat et al. [2], who categorize the approaches
into three groups: (1) kinematic-based methods; (2) computer vision-based methods; and
(3) audio-based methods. Kinematic-based methods use accelerometers, gyros, or control
signals onboard the machines. Computer vision-based methods use cameras, and audio-
based methods use microphones. Most of these methods do not employ factory-installed
sensors on the machines but require additional sensors placed on or near the equipment.
The studies on MAR for construction equipment typically aim to recognize 3–9 operation
modes (including “trivial” modes, e.g., engine off and idle), achieving overall accuracies
between 87% and 97% [2].

The categorization into three main approaches and the conclusions by Sherafat et al. [2]
hold well also when considering papers that are not included in the review. Some excep-
tions are the work by Jung et al. [4], using movies of construction equipment downloaded
from YouTube and two papers [5,6] which used unmanned aerial vehicles (UAV) to collect
vision-based data without the constraint of fixed camera positions. Additionally, an early
work by Vachkov et al. [3] and a recent work by Saari and Odelius [7] applied unsuper-
vised learning techniques for MAR; whilst some research works started to use simulated
data [8,9] and augment the data with known invariances [10]. However, apart from these re-
search works, the MAR work has remained fully within the supervised learning paradigm,
without using unlabeled data or synthetic data for the learning process.

There are very few publications on forklift truck activity recognition, and none report
on performance measures. A German patent application [11] describes a system with
ultrasound and motion sensors installed on the trucks and in the warehouse infrastructure
where they operate. Alias et al. [12,13] suggest a solution with a few onboard sensors (not
built-in) and cameras mounted in the warehouse infrastructure, to track forklift trucks
and estimate the presence of load on the forks. In none of these cases are accuracies
provided; the papers (and patent) describe possible solutions but no evaluations. Hence,
the work presented in this paper is the first detailed description and evaluation of an
activity recognition approach for forklift trucks.
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2.2. Semi-Supervised Learning

Semi-supervised learning (SSL) is about making effective use of unlabeled data in
learning. Chapelle et al. [14] provide a comprehensive introduction to the field and summa-
rize the assumptions that form the basis for successful applications of SSL. Van Engelen and
Hoos [15] present a review of the SSL field with a taxonomy of methods. The approach used
for the forklift truck activity recognition fits within the framework of wrapper methods,
where unlabeled data are incorporated via a pseudo-labeling step. In wrapper methods,
a model is first constructed from labeled data using supervised learning, and unlabeled
data are then labeled using this model. The most confident predictions are added to the
labeled dataset, from which a new model is trained.

In our approach, we make two modifications to the pseudo-labeling step by (1) using
all the pseudo-labeled data (instead of only using those with high prediction probabilities)
and (2) learning new features (rather than training posterior models). This idea is similar to
the naive semi-supervised approach presented by [16], where the authors show that deep
neural networks are able to generalize well after training from noisy data.

3. Data Description
3.1. Data Collection

The data were sampled from internal CAN buses on forklift trucks using a compact
CAN logger, a Vector GL1000, at a frequency of 10 Hz. Data were collected at two warehouse
sites, one in Sweden and one in Norway, with the same machine type: reach forklift trucks
with a load capacity of 1.6 tons. At the Swedish site, a camera was mounted above the
dashboard and recorded the driver’s hand actions, which enabled later labeling of the
activities. Two subsets of data were collected at the Swedish site with the same driver
operating the same forklift; one with 58 min of data and the other with 27 min of data.
The longer dataset represented normal operations, such as driving, picking orders, handling
loads, and waiting to cross traffic. The shorter dataset focused more on demonstrating
particularly complex activities, including various types of load handling operations and
long periods of driving mixed with turns and stops. The Norway data were collected
from a single forklift truck during two weeks of normal operation across different drivers.
The Norway dataset was not labeled with activities.

In total, 262 signals were sampled from the CAN buses, with 14 of these signals
recommended by domain experts as being particularly informative for recognizing forklift
activities. The signals describe the steering command, wheel angles, fork reach command,
fork reach position, lifting and lowering commands, fork height, load on the forks, engine
speed, wheel speed, and heading of the truck.

3.2. Activity Labeling

At the center of MAR is the concept of “activity”. An activity is made up of a sequence
of actions or events. Inherently, there are degrees of granularity or Level-of-Detail (LoD) in
activities. For this paper, forklift experts were asked to propose activities that would be
interesting to recognize and to sort them into desired LoDs. This resulted in a structure
with four levels, presented in Figure 1. This structure is very similar to the LoDs for
front-end loaders exemplified by Akhavian and Behzadan [17] or to the action hierarchy
for construction machines suggested by Harichandran et al. [18]. The first level contains
engine off and engine on. In the second level, while the engine off remains unchanged, engine
on is further divided into idle and active. The engine off and idle activities can trivially be
recognized, so the objectives of the data-driven method are the sub-activities of active in
the deeper levels. In the next level, active is separated into three activities, i.e., drive, load-
handling, and other. Finally, at the bottom of this hierarchy, while keeping other unchanged,
drive with load and drive without load are stated as the sub-activities of drive; similarly, take
load and leave load are the sub-activities for load-handling. It is worth noting that boundaries
between activities are not always distinctive. Operators can perform two activities in
parallel to maximize productivity, e.g., approaching the rack while lifting the fork. Thus,
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even human expert labels inherently exhibit uncertainty. Furthermore, the sequences of
activities are expected to follow a logical order. For example, at Level 4, the four activities
should appear in cycles: drive without load, take load, drive with load and leave load.

Figure 1. LoD of Forklift Truck Activities.

A forklift expert manually labeled each second of the two videos from the Swedish
site by interpreting the drivers’ actions. This labeling was performed according to Level
4 in Figure 1. Figure 2 shows a comparison of the labeling on Levels 3 and 4 in these
two datasets. Their distributions differ regarding the other category because the 27-min
dataset does not reflect normal operation, while the 58-min dataset does. The other activity
corresponds, e.g., to picking up orders and waiting for crossing traffic, which occurs very
rarely in the shorter dataset. Despite this difference, the 58-min dataset was selected as the
training set and the 27-min dataset for out-of-sample testing.

Figure 2. Distributions of activities at different Level-of-Detail, and for the two subsets of the
Swedish dataset.

4. Methodology

The approach consists of the following five steps; each of them is described in detail
throughout the subsequent subsections:

1. Train a baseline classifier using the labeled training data to be able to create pseudo-
labels for the unlabeled data.

2. Train an autoencoder using the large unlabeled data set. The output of the bottleneck
layer in this autoencoder is the autoencoder representation.
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3. Fine-tune the autoencoder representation into a discriminative representation using
the pseudo-labeled data.

4. Use the discriminative representation as input to a new classifier, trained on the
labeled data.

5. Post-process the predictions from the classifier in step 4.

Figure 3 provides an overview pipeline of the five steps in the method and illustrates
how the labeled, the unlabeled, and the pseudo-labeled data are used in different steps.

Figure 3. Pipeline of the method. Boxes in blue correspond to Section 4.1. Boxes in red correspond to
Section 4.2. Boxes in purple correspond to Section 4.3. Box in yellow corresponds to Section 4.4.

4.1. The Baseline Classifier

Sliding windows of size (K × M) were used as inputs for the baseline classifier (K
is the number of signals, and M is the number of time steps). Following the work of
Shi et al. [19], who also used CAN data (collected from displacement devices), logistic
regression (LR), support vector machine (SVM), and random forest (RF) were tried in the
baseline experiment. The best results were achieved with RF, and the baseline classifier is
therefore denoted baseline RF.

4.2. Autoencoder

Deep autoencoders [20] with a fan-in architecture were used for the encoder and a
symmetric fan-out structure for the decoder. The inputs to the autoencoder are the same
as those used in the baseline classifier learning step (i.e., the K×M sliding time window).
After training, the output of the bottleneck layer is a low-dimensional representation of the
unlabeled data, denoted auto_representation.

4.3. Fine-Tuning Autoencoders into Auto_Discriminators

The auto_representation preserves the data variance, but this is not necessarily optimal
for the activity recognition (it was verified in experiments that the autoencoder represen-
tation was not very effective for activity recognition). The autoencoder was, therefore,
fine-tuned into a discriminative model by removing the decoder part and replacing it
with a classification layer. We denote the result using auto_discriminator. Both the encoder
part and the classification layer of the resulting network were then further trained using
pseudo-labeled data. Pseudo-labeled data are the unlabeled data with labels predicted
using the baseline classifier. Since this is a fine-tuning procedure, the network is not trained
from scratch; instead, the weights in the encoder part are inherited from the autoencoder.
The learning rate in this step is set to be very small to make only minor adjustments to the
weights. The resulting representation is denoted by auto_disc_representation.
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4.4. Post-Processing

Some activities are similar and easily confused, thus determining which one is being
performed requires a context longer than two seconds. A two-step post-processing based
on statistics and expert knowledge was employed to correct this. The first step is statistical
and based on the probabilities of transitions between activities. This fixes intermittent
spurious errors. The second step is an expert-based correction that builds on the expected
logical order between operations.

4.4.1. First Step: Transition Probability-Based Correction

The transition probability post-processing is designed to combine the prediction
probabilities from the classifier with the conditional probabilities from the ground truth
activity transition. For notation simplicity, prediction at time t is denoted by αt

i , where
the index i ∈ {1, 2, 3, 4, 5} corresponds to the five target activities at level 4 in Figure 1,
e.g., α5 is the prediction of other. For every time step t, the classifier outputs five prediction
probabilities yt

i , which can be interpreted as estimates of the conditional probabilities
yt

i = P(αi|xt), where xt is the signal input at time t. The a priori transition probabilities

P
(

αt
i |α

t−1
j

)
are estimated from the 58-min labeled data. For example, P

(
αt

1|α
t−1
4

)
is the a

priori probability that the activity switches from leave load to drive without load, before we
have any information about the signal xt. This probability is relatively small (approximately
5%) because most of the time the activity during the next second is the same as during the
current second.

This post-processing adjusts the activity classification for time step t based on the
activity in the previous time step t − 1. It builds on the assumption that the previous
activity is known, and the success of the post-processing depends on having some activity
classifications that can be considered certain. A threshold θ is therefore set to select only the
uncertain predictions as targets for the post-processing. If the highest prediction probability
at time step t is larger or equal to θ, then no post-processing is applied to that prediction.
Otherwise, the prediction is replaced by the modified value ŷi

t = yt
i × P(αi|A(t− 1)),

where A(t− 1) ∈ {α1, α2, α3, α4, α5} denotes the certain activity at the previous time step.
The activity for time t is then set to the activity with the largest ŷi

t, and the post-processing
continues with the next time step, t + 1.

4.4.2. Second Step: Logical Order-Based Correction

The second post-processing step aims to fix longer sequences of erroneous predictions.
There is an expected order between activities: drive without load should be followed by take
load, which should be followed by drive with load, which should be followed by leave load,
which should be followed by drive without load, and so on (see Figure 4). The activity other
can follow or precede any activity.

Predicted activities that do not follow this expected logical order are considered wrong
and are corrected to the most similar activity that agrees with the order. Note that “similar”
means the activities that are one activity in Level 3 but two activities in Level 4 (see Figure 2):
take load is similar to leave load, and drive with load is similar to drive without load (especially
if the weight of the load is small, below sensor detection threshold).

Figure 4. The logical order of forklift activities. Some papers [5,19] refer to this as “working cycles”
of equipment.
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4.5. Evaluation Metrics

The area under the receiver-operating curve (AUC) is considered gold standard when
describing classification performance. However, when tests are conducted using one-
against-all in a multi-class scenario, every test will be imbalanced, and our observation
is that AUC tends to be overly optimistic whenever the classifier is good at recognizing
one category. When evaluating imbalanced cases, it is advised to use balanced metrics [21],
and we use the balanced accuracy (BA) for evaluating the one-against-all tests. The BA is
defined as

BA =
TPR + TNR

2
, (1)

where TPR and TNR are the true-positive rate and the true-negative rate, respectively.
When considering multi-class classification, the Matthews correlation coefficient

(MCC) is recommended [22], and the MCC is therefore also reported for the full multi-class
case. For the binary (two classes) case, MCC is defined as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (2)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. Perfect prediction
yields MCC = 1. Gorodkin’s generalization of MCC is used for the multi-class case [23].
It should be noted that BA and MCC can not be directly compared, since BA ∈ [0, 1] and
MCC ∈ [−1, 1].

5. Results

The “original data” are the 14 signals suggested by experts to be useful for recognizing
the target activities (see Section 3). Two-second-long snapshots were used, so the sliding
window was of size 14× 20, thus, the input was 280-dimensional. The activity label of each
time window was determined by the last activity in that window snapshot. The window
moved forward by 10 time steps (1 s) each time; therefore, the overlap between adjacent
windows was 50%.

Supervised learning experiments were conducted using the 58-min labeled dataset as
the training set, and 10-fold cross-validation was used to estimate variation in the results
and determine hyperparameters. Two hold-out datasets were kept for testing: the shorter
27-min labeled dataset and 15.2 h of the unlabeled dataset. Instead of running the final
models on the hold-out sets once, each model was trained in a stratified 10-fold cross-
validation manner (after model selection), and all the resulting models were tested on the
entirety of both hold-out sets. In this manner, all the results can be reported with mean
and standard deviation, and a t-test can be used to estimate whether the differences in
performances are significant.

5.1. Similarities between Data Sets

Autoencoders can be used to check whether the data occupy a low-dimensional man-
ifold and if this manifold is approximately the same in different data sets. Autoencoder
networks with different structures, varying in breadth and depth, were trained until achiev-
ing good performance of reconstructing the signals. After model selection, it was decided
to use encoders with three hidden layers, with 128, 64, and 32 units, respectively. The de-
coder was symmetric in its structure and had three layers, translating the total autoencoder
architecture into 280–128–64–32–N–32–64–128–280, where N denotes the number of units
in the bottleneck layer. Activation functions in all the hidden layers were ReLu, except for
the bottleneck units, which used a linear activation function. Backpropagation and early
stopping were used for training. Figure 5 shows how the reconstruction error behaves
depending on the number of bottleneck units (right) and the amount of data used for
training (left).
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Figure 5. Reconstruction performance on the hold-out (unlabeled) test data from the Norway site
and the two labeled datasets from the Swedish site, based on (left panel) adding more data during
training and (right panel) increasing the bottleneck size.

Autoencoders were trained using unlabeled data from the Norway warehouse. The re-
construction error, when evaluated on hold-out test data, decreased when the amount of
training data increased or when the number of bottleneck units increased. The behavior
was essentially the same for data from the Norway and Sweden sites (see Figure 5). All
networks in the right panel of Figure 5 were trained with 25 h of unlabeled data, and the
autoencoders in the left panel all used three units in the bottleneck layer. The result shows
that the low-dimensional manifolds where the data reside appear to be very similar be-
tween the Norway and the Sweden data sets, indicating that SSL should be applicable,
since this is a requirement listed by Chapelle et al. [14]. Furthermore, being able to use
much more data made a significant difference: an autoencoder trained with a large amount
of unlabeled data from Norway was actually better at reconstructing the Swedish data than
an autoencoder trained on all the available Swedish data itself.

5.2. Representations for Classification

The first hypothesis was that the sub-manifold representation from the autoencoder
would, by itself, be useful for activity recognition. After all, principal component represen-
tations are often useful for classification tasks. This hypothesis was tested by constructing
a number of RF classifiers, each using the bottleneck representation for one of the au-
toencoders in the right panel of Figure 5. The somewhat disappointing results from this
experiment are shown in the left panel of Figure 6. None of the autoencoder representations
(auto_representations) result in a classifier that is close in accuracy to the baseline RF model
with raw data (cf. first column in Table 1). However, the classification improves with
increasing bottleneck size. All the classification results in Figure 6 come from the evaluation
on the 27-min hold-out test data from the Swedish site.

The discriminative representations were learned by fine-tuning the autoencoders as
described in the methodology section (see Section 4.3). The same 25-hour data as used for
the autoencoder training were used for training the auto_discriminators, with pseudo-labels
provided by the baseline RF classifier.

The right panel in Figure 6 shows the comparison between recognition and recon-
struction performance (with RF classifiers constructed as above, except now using the
discriminative representations). For the reconstruction results, new decoders with the same
symmetric structure, i.e., N–32–64–128–280, were trained to reconstruct the unlabeled data
from the auto_disc_representations.
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Figure 6. Comparison between recognition performances (in MCC) and reconstruction performances
(in MSE) using (left panel) the auto_representations and (right panel) the auto_disc_representations.

The results in the right panel of Figure 6 show that the SSL method yields features that
are good for discriminating between activities and that using few features is no worse than
using many. A t-test was used to determine that there is no statistically significant difference
between using low dimensional auto_discriminators with 3–6 features. Therefore, the three-
dimensional setting was selected, which makes sense from Occam’s razor point of view
and also provides the benefit of allowing visualization of the feature space. Consequently,
the architecture of the auto_discriminators was chosen to be 280–128–64–32–3–5 (there are
five activities in Level 4). All hidden layers used ReLu activation functions, and the output
layer used a softmax.

The activity recognition results on the hold-out 27-min labeled test data with different
representations (original space, auto_representation, and auto_disc_representation) are shown
in Table 1. The three-dimensional auto_disc_representation provides activity recognition
results that are not significantly worse than those of the baseline RF with the original
280 features and definitely much better than those with auto_representation. This result
shows that the SSL method can map the original representation into a very low (almost 100
times smaller) dimensional representation where key information for recognizing forklift
activities is preserved.

Table 1. Classification results of the RFs on top of different representations (mean ± 2×std.)

RF in Original Repre-
Sentation (280D)

RF in Auto_
Representation (3D)

RF in Auto_Disc_
Representation (3D)

BA

Other 0.87± 0.01 0.83± 0.02 0.79± 0.27
Drive without Load 0.83± 0.03 0.72± 0.02 0.83± 0.03

Drive with Load 0.76± 0.04 0.53± 0.05 0.73± 0.06
Take Load 0.73± 0.02 0.66± 0.02 0.71± 0.01

Leave Load 0.62± 0.06 0.59± 0.02 0.59± 0.03

MCC All activities 0.52± 0.04 0.30± 0.03 0.47± 0.05
Balanced accuracy (BA ∈ [0, 1]) and Matthews Correlation Coefficient (MCC ∈ [−1, 1]) are reported.

Figure 7 shows a visualization in the three-dimensional auto_disc_representation of the
58-min labeled data with Level 4 activity labels. The activities are quite well separated and
the relationships between them are visible, e.g., other intersects with drive without load, take
load is close to leave load, and so on.
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Figure 7. The labeled 58-min data (training set) from the Swedish site is shown in the discriminative
3-dimensional representation (activities are based on true labels from a human expert).

5.3. Post-Processing

The first post-processed results we present in this section come from the RF trained
on the auto_disc_representation. The decision threshold θ in step 1 is set to 0.8, a choice
explained below. After the two-step post-processing, 27.5% of the predictions have changed,
and 88.9% of these changes match the domain expert labels. Table 2 summarizes and
compares the results of applying the two post-processing steps. The first column shows the
recognition result without any post-processing. The two middle columns show the result
after applying only one of the post-processing steps. The last column shows the result after
both steps 1 and 2. It is clear that the first step of the post-processing, which cleans up
spurious misclassifications, is necessary for the second (logic-based) step to be effective.

Table 2. Classification results of the RFs on top of different representations (mean ± 2×std); boldface
indicates the best performance (statistical significance) in each row.

No Post-Processing Step 1 Only Step 2 Only Two-Step (1 + 2)

BA

Other 0.79± 0.27 0.85± 0.17 0.79± 0.27 0.79± 0.25
Drive without Load 0.83± 0.03 0.87± 0.03 0.61± 0.20 0.94± 0.02

Drive with Load 0.73± 0.06 0.77± 0.01 0.60± 0.26 0.95± 0.01
Take Load 0.71± 0.01 0.74± 0.02 0.74± 0.13 0.88± 0.05

Leave Load 0.59± 0.03 0.58± 0.03 0.76± 0.15 0.88± 0.02

MCC All activities 0.47± 0.05 0.53± 0.03 0.36± 0.30 0.82± 0.03

Balanced accuracy (BA ∈ [0, 1]) and Matthews Correlation Coefficient (MCC ∈ [−1, 1]) are reported.

For testing the performance of the proposed method in terms of semi-supervised
feature learning, post-processing was also applied to three other classifiers, i.e., the first
three columns in Table 3. Except for the baseline RF, another RF classifier is trained with the
pseudo-labeled large data set, namely the pseudo-label RF, and it is significantly different
from the baseline RF that supplies the pseudo-labels. One more RF, an RF on top of
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disc_representation, is trained on top of a multi-layer perceptron (MLP). This MLP has the
same network structure as auto_discriminator and is trained directly from the pseudo-labeled
data without first training an autoencoder.

Table 3. Classification Results from different experiments after post-processing (mean ± 2×std);
boldface indicates the best performance (statistical significance) in each row.

Baseline RF
(280D)

Pseudo-Label RF
(280D)

RF in Disc_
Representation (3D)

RF in Auto_Disc_
Representation (3D)

BA

Other 0.92± 0.01 0.87± 0.00 0.88± 0.03 0.79± 0.25
Drive without Load 0.65± 0.36 0.92± 0.01 0.90± 0.08 0.94± 0.02

Drive with Load 0.62± 0.40 0.93± 0.01 0.87± 0.15 0.95± 0.01
Take Load 0.76± 0.19 0.85± 0.01 0.84± 0.04 0.88± 0.05

Leave Load 0.67± 0.20 0.85± 0.01 0.86± 0.02 0.88± 0.02

MCC All activities 0.37± 0.38 0.79± 0.02 0.75± 0.12 0.82± 0.03

Balanced accuracy (BA ∈ [0, 1]) and Matthews Correlation Coefficient (MCC ∈ [−1, 1]) are reported.

Figure 8 summarizes the classification results for the four methods for different values
of the certainty threshold θ. Selecting the results corresponding to the highest MCC value
for each method yields the results in Table 3. All classifiers trained with the large pseudo-
labeled data set are approximately equal in performance, outperforming the baseline RF.
This is because the baseline RF tends to give erroneous predictions with high prediction
probabilities, which are then not fixed in the first post-processing step because the prob-
abilities are higher than the threshold θ. A concrete example are the three consecutive
predictions from the baseline RF: take load, drive without load and take load. The middle
prediction, drive without load, is incorrect but not fixed with the first step due to having a
high prediction probability. Then, the second post-processing step will change drive without
load into drive with load, according to the first prediction of take load. Next, the last prediction
of take load will be changed into leave load because its previous activity is now drive with load.
If the spurious predictions are not corrected, then one wrong prediction can destroy several
following prediction results (until the next certain and correct prediction is encountered).

Figure 8. Classification results (using MCC) for post-processing with different decision thresholds.
Error bars indicate standard deviations.

Figure 9 illustrates the activity recognition results on the 27-min hold-out test set with
and without post-processing. The activity recognition with the auto_disc_representation is
quite good in itself but has problems with separating take load and leave load, and with
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detecting drive with load for light loads. The post-processing steps fix these confusions,
and an “invisible load” is detected in a driving activity that occurs after about 1000 s.
The load sensor is not sensitive enough to detect a load on the forks, but the activity
recognition algorithm figures this out from the context, i.e., the prior recognized activities.
Similar detection of “invisible loads” is also observed in the unlabeled data set, but no
ground truth is available to verify their correctness.

Figure 9. Ground truth and predictions (before and after post-processing) on each second in the
27-min hold-out test set.

5.4. Benchmark against Human Labeling

There is uncertainty in the expert labels because of the fuzzy boundaries between
activities. It is therefore unrealistic to expect any classifier to recognize the activities with
100% accuracy. A test was conducted with two non-experts who were asked to label the
forklift activities by observing movies from the data collection. Table 4 shows how the
two non-experts match the expert labels on the 27-min hold-out test data from Sweden,
measured with BA and MCC. When compared with the rightmost column in Table 2 or
Table 3, it is striking how well the SSL method combined with post-processing is able
to recognize the activities. It is only for the other activity that the non-experts perform
significantly better.

Table 4. Activity recognition results of two non-experts on the hold-out test set (using video).

Person 1 Person 2

BA

Other 0.90 0.83
Drive without Load 0.93 0.93

Drive with Load 0.94 0.93
Take Load 0.89 0.89

Leave Load 0.90 0.89

MCC All activities 0.84 0.83
Balanced accuracy (BA ∈ [0, 1]) and Matthews Correlation Coefficient (MCC ∈ [−1, 1]) are reported.

5.5. Comparison against Motor Times

It was also checked how the recognized activities agreed with the “active motor time”,
which represents the current industry standard measure for forklift utilization. The “active
motor time” is robust and straightforward to compute, but not nearly as fine-grained and
informative as the activity recognition. It is expected that the total time with active motors
should correspond to the total time with activity for the forklift truck. A total of four time
measurements are reported for each forklift truck: the time the drive motor has been active
(driving time), the time the lift motor has been active (lifting time), the time either of the drive
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or lift motors have been active (active time), and the time none of the motors have been
active (inactive time). Figure 10 shows how these match the recognized Level 4 activities
on the 27-min hold-out test set. The inactive time matches well to the other activity, and the
active time matches well to the sum of the remaining four activities. This confirms that the
activity recognition results make sense.

The sum of drive without load and drive with load does not match the driving time
perfectly, and the sum of take load and leave load does not match lifting time perfectly. This is
to be expected since a load handling activity involves more than just using the lift motor
(e.g., driving toward and away from a rack). Thus, the SSL method for predicting activities
agrees with and improves upon the current method for measuring forklift utilization.

Figure 10. Predicted activities on the hold-out test set, compared to the current industry standard
method (motor time) for measuring forklift utilization.

6. Summary and Conclusions

This paper describes and evaluates an activity recognition method for forklift trucks
based on using streaming onboard CAN data. The method builds on first using a random
forest classifier trained on a small data set collected in a laboratory, which is then used to
label a large corpus of data from a warehouse in normal operation. Using this larger pseudo-
labeled data set for training yields a more accurate classifier than the original one. Moreover,
it is shown that this semi-supervised approach can be used to find a discriminative low-
dimensional representation that allows visualization of the operational data with equally
good accuracy, as compared to the original high-dimensional representation.

Furthermore, the results demonstrate that semi-supervised representation learning for
MAR benefits from combining with two steps of post-processing; one statistical, considering
transition probabilities between states, and one expert-driven, enforcing a strict “grammar”
of how the activities are expected to arrive in a specific order. The final classifier is very
accurate on a hold-out test set, with recognition accuracies of 88% for driving and 95% for
load-handling activities. The Matthews correlation coefficient is 0.82. This is essentially as
accurate as two non-experts who labeled the hold-out test data based on a video recording
of the forklift truck activities.

The activity recognition results are evaluated quantitatively with standard classifi-
cation metrics, as well as qualitatively by comparison with the conventional industrial
approach. The comparison shows that the proposed activity recognition method represents
a substantial improvement over the conventional method using “active motor time”, e.g., by
detecting loads on the fork that are invisible to the onboard load sensor, and by providing
counts and lengths of complete “load–transport–unload” cycles performed.
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There are several potential challenges for future application of the proposed method,
which will be the topic of further research. One is that the expert post-processing (the
“grammar”) assumes a “strict” working cycle; activities after leave load are either drive
without load or other. This may not always be the case; operators can perform two activities
of load-handling at the same rack, i.e., take load can be performed immediately after leave
load, without any driving in between. Other unusual scenarios are not considered in the
method either, such as using the forks to push loads without lifting or lowering them. This
was not encountered in the hold-out test set, which corresponds to “laboratory” type of
data (the operators know that they are being monitored). As the results are extended to
other warehouses under normal operation, there will likely appear new, creative ways to
use forklift trucks. These challenges, however, are very likely not unique to forklift trucks
and are also probably valid for human-operated construction equipment.
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