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Abstract. This study applies a data-driven anomaly detection frame-
work based on a Long Short-Term Memory (LSTM) autoencoder net-
work for several subsystems of a public transport bus. The proposed
framework efficiently detects abnormal data, significantly reducing the
false alarm rate compared to available alternatives. Using historical re-
pair records, we demonstrate how detection of abnormal sequences in
the signals can be used for predicting equipment failures. The deviations
from normal operation patterns are detected by analysing the data col-
lected from several on-board sensors (e.g., wet tank air pressure, engine
speed, engine load) installed on the bus. The performance of LSTM au-
toencoder (LSTM-AE) is compared against the multi-layer autoencoder
(mlAE) network in the same anomaly detection framework. The exper-
imental results show that the performance indicators of the LSTM-AE
network, in terms of F1 Score, Recall, and Precision, are better than
those of the mlAE network.
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1 Introduction

In many industries, maintenance is a significant part of the operation. As an ex-
ample, a key parameter for bus operators is vehicle downtime, namely whenever
a vehicle is needed but not available [17]. Analysing the time buses from a par-
ticular fleet spend in a workshop (or on the way there) is vital for understanding
the efficiency of operations, especially for follow-up on any improvements. An es-
sential next step is to develop systems that can automatically detect faults, i.e.,
analyse the data on-board vehicles and identify anomalous behaviour. A fault
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prevents the bus from operating. One of the reasons for the surprisingly large
amount of (costly) time buses spend at workshops is the waiting time – even
though there is no work being done on it. The bus operator cannot optimally
plan their operation since much of this waiting time is insufficient planning. Un-
expected failures typically lead to long waiting times. The framework proposed
in this paper aims to support the automotive industry in more efficient planning.

Anomalies are good indicators of malfunctions in a system. In the era of big
data, considerable research efforts focus on designing online algorithms capa-
ble of detecting anomalies from streaming data. To detect anomalies in a given
system, it is necessary to define a “normal system behaviour”. However, when
the volumes of data and the complexity of systems are continuously growing,
it becomes infeasible for human experts to build an exhaustive definition of
each system’s normal behaviour. Moreover, the definition of normal is dynamic,
as sensors generate data that is subject to change over time due to external
conditions (i.e., normal data samples are drawn from a non-stationary distri-
bution). In a real-world application domain, we monitor one bus operating in
typical conditions in Sweden. We are particularly interested in detecting devia-
tions that identify faults during a bus’s operation. In this paper, we implement
a fault detection framework based on deep learning (DL) to detect failures of
bus air system. Our goal is to identify abnormal behaviours in the data stream
obtained from sensors installed in the system while the bus is in operation. The
objective is to predict if a failure evolves using unsupervised methods based on
deep learning.

The remainder of the paper is structured as follows: an overview of the related
work in the context of anomaly detection is provided in Section 2. Section 3 dis-
cusses the problem description. In Section 4 we present fault detection method-
ology and proposed failure detection framework. The case study, pre-processing
and data cleaning, feature generation, and anomaly detection are discussed in
Section 5. Section 6 contains experimental results obtained by the LSTM au-
toencoder (LSTM-AE) and multi-layer autoencoder (mlAE), and finally, the
concluding remarks are provided in Section 7.

2 Related Work

The current industrial solution for vehicle on-board fault detection and diagnos-
tic systems, e.g., [15], still rely heavily on domain knowledge from a human expert
and is essentially based on either building a pattern recognition classifier or a
reference model. This paradigm requires domain experts such as field engineers
to drive the development, i.e., modelling the physical process involved, deter-
mining potential faults or risky events, conducting controlled experiments, and
collecting relevant data for analysis. Relevant reviews can be found in [8,7,6,18].
While this paradigm has proven effective for predefined faults by domain ex-
perts, unexpected faults occurred post-deployment in the field not covered by
the system, which is developed prior to the deployment.
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An alternative approach is to monitor systems on-board vehicles and au-
tonomously captured key characteristics of the operation (in model space) for
anomalous event detection: the reference system representation is learned with
unsupervised models (e.g., LSTM or AE networks) on data stream coming from
machines working under normal conditions. In contrast, an abnormal machine
would yield a deviation in the model space and a higher reconstruction error.
Similar concepts are studied in, e.g., [10,3].

Deep learning methods have been employed for many different real-world
applications. Fan et al. [5] utilised echo state network to capture air system
dynamics and perform conformal anomaly detection with learned features for
detecting compressor faults. Munir et al. [13] presented a DL approach to de-
tect a range of anomalies (point anomalies, contextual anomalies and discords)
in time series data. Michau et al. [12] used AE network for unsupervised fea-
ture parameter learning and integrated it with a one-class classifier that is only
trained with samples of healthy conditions for fault detection. Davari et al.[4]
proposed a data-driven predictive maintenance framework for the air produc-
tion unit system of a train by deep learning based on a sparse AE network that
efficiently detects abnormal data and considerably reduces the false alarm rate.

The anomaly detection techniques for time series sequence based on DL
algorithms augmented with LSTMs are used in several studies (e.g., [9,19]).
Chauhan et al. [1] applied recurrent neural network (RNN) and LSTM to detect
anomalies in ECG signals. Nguyen et al. [14] proposed a LSTM based method
for forecasting multivariate time series data and an LSTM AE combined with
a one-class support vector machine algorithm for detecting anomalies in sales.
Maleki et al. [11] introduced a probability criterion based on the central limit
theorem to evaluate the likelihood of a data point that is drawn from an un-
known probability distribution for the goal of data labelling. Then, normal data
is passed to train an LSTM autoencoder that distinguishes anomalies when the
reconstruction error exceeds a threshold.

This paper proposes a framework based on LSTM autoencoder to address
the challenges and limitations of anomaly detection. The contribution of this
study is a multivariate time series anomaly detection method based on LSTM
autoencoder with the application to data from a Volvo bus in regular operation.

3 Problem Description

Data Description The data used in this study were collected from buses
operated in traffic around a city on the west coast of Sweden. Four vehicles
were year model 2009, one was 2008, and the remaining was produced in 2007.
On-board data collection took place from August 2011 until the end of 2017,
in regular operation, where each bus was driven approximately 100 000 km per
year.

Data from the J1587 diagnostic bus and two CAN buses (the vehicle and the
powertrain CANs) were sampled once per second, collecting approximately one
hundred sensor and control signal values. An in-house developed system called
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the Volvo Analysis and Communication Tool (VACT) was used in the study;
it uses a telematics gateway for communication and can wirelessly receive new
sampling configurations.

In addition, we have analysed an off-board database containing Vehicle Ser-
vice Record (VSR) information. Each entry in this database contains informa-
tion about repair and maintenance services done on the vehicles, including date,
mileage and unique part identifiers. There are, unfortunately, frequent quality
issues with the data since the VSR is primarily manually entered by mainte-
nance personnel. Given that the primary purpose is accounting and invoicing,
the detailed information about the repairs, especially the degree of component
deterioration and root cause analysis, is less than perfect. This data was partly
curated using vehicle GPS data and bus operator’s internal operation notebooks.

Fault detection The key to reducing downtime is building a system capable of
detecting early symptoms of wear and faults. If the operator and workshop per-
sonnel become alerted before they become real problems or failures, i.e., before
they take the bus out of commission, they can be handled much more efficiently.
Optimally, one could solve these problems during the next planned maintenance
visit. In our study, we have noticed that vehicles would spend, on average, almost
1.5 months per year in workshops. Early discovery of faults and improved diag-
nostics is expected to decrease the waiting time, incorrect repairs significantly,
and other similar issues, conservatively reducing the total downtime by 50% or
more.

In this study, we aim to detect periods of abnormal vehicle operation, i.e.,
quantify the “strangeness” of sensor data, compared to what is expected. Many
current approaches for equipment monitoring require (semi-)manual creation of
some model of what is expected. On the other hand, our goal is to automatically
monitor a wide range of complex equipment with many possible faults. This
goal requires autonomously constructed knowledge from the data, with very
little reliance on human experts. In particular, one cannot assume that a list of
all possible faults can be provided for training.

4 Fault Detection Methodology

This experimental fault detection framework aims to predict and detect faults
by cleaning and extracting time series data features in an optimal sliding time
window and feeding them into a deep LSTM-AE network that performs a clas-
sification task.

LSTM Encoder-Decoder An autoencoder is an unsupervised neural network
(NN) trained to reconstruct the inputted time-series data as its output. The
encoder learns to compress a high-dimensional input to a low-dimensional latent
space, and the decoder then attempts to reconstruct the output with minimal
error faithfully. The general form of multivariate time-series at the sliding time

window i can be expressed as X(i) = X
(i)
1 ,X

(i)
2 , . . . ,X

(i)
j , ..,X(i)

m of length m,
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where m is the number of time series variables (number of sensors) and X
(i)
j is

an observation vector of readings from jth sensor at the sliding time window i.
The difference between the input vector X(i) and the reconstructed vector

X̂
(i)

is called the reconstruction error e
(i)
r . The trained network tries to minimise

the reconstruction error as its objective function. A common metric for this

error is Mean Squared Error (MSE): e
(i)
r = ∥X(i) − X̂(i)∥

2
which measures the

proximity of the reconstructed input to the original input.
The trained LSTM Encoder-Decoder model reconstructs the normal mul-

tivariate time series. The reconstruction errors of the training data are then
compared to test data, i.e., an anomaly score for each dataset in a sliding time
window is calculated, and identifies whether it follows the normal distribution
of the time series. The higher the anomaly score, the more likely is it that the
given data time window should be considered an anomaly.

Figure 1 illustrates the steps of the LSTM-AE network for a time-series data
consisting of n sliding time windows, in which hE

i and hD
i are the hidden state of

the encoder and decoder, respectively, at the sliding time windows i = 1, . . . , n.
The LSTM encoder learns an input time series and generates an encoded

state while the LSTM decoder produces the reconstructed data at the sliding
time window i by applying the hidden decoding state at sliding time window
i and the predicted time series at the sliding time window (i − 1). In order to
reconstruct the time series, the encoder and decoder parts are jointly trained.

In order to obtain the hidden state of the encoder at sliding time window i,
X(i) at sliding time window i and the hidden state of the encoder at sliding time
window (i− 1), ( hE

i−1) are used. The hidden state of the encoder at the end of

the input sequence, hE
n , is used as the initial state of the decoder, hE

n = hD
n . The

decoder uses hidden state hD
i and the predicted value of time series at sliding

time window i, (i.e., X̂
(i)

) to produce the next hidden state.

The Proposed Framework The time-series dataset includes normal and ab-
normal observations. We split the normal data into two sets: training and vali-
dation. The training dataset is used to learn the LSTM-AE network, while the
validation dataset is used for an early stop in the autoencoder training (i.e.,
when the validation loss does not improve and the generalisation error begins to
degrade). The root mean square of reconstruction error for the training dataset
(RMSEtrain

r ) is used to estimate a threshold value (through a Boxplot anal-
ysis) for labelling test data. The training dataset is assumed to have normal
behaviour, so as we can consider, the RMSEtrain

r follows a normal distribution.
However, if there are some outliers in the training dataset, the distribution will
be asymmetric; i.e., the methods work based on normality assumption may not
be useful. Boxplot is useful as a consistent method to display the distribution of
the dataset. Extreme observations can be easily ignored, thus, it can be used to
set the threshold of RMSE of test data (RMSEtest

r ).
Next, the test data that contain normal and abnormal samples is employed

to validate the network performance. If RMSEtest
r is larger than the thresh-

old value, then the data is considered as an anomalous observation; other-
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Fig. 1. An LSTM-AE network for a sequence with length n

wise, it is a normal one. In this paper, the anomalies are detected as a clas-
sification problem, where the classification labels “0” and “1” indicate normal
and anomaly observations, respectively. The maximum and minimum values
of the Boxplot are obtained from 1.5 ∗ IQR above the third quartile (Q3) and
1.5∗IQR below the first quartile (Q1), respectively; where IQR is the interquar-
tile range, i.e. the difference between the upper and the lower quartiles. The
interval [Q1 + 1.5 ∗ IQR, Q3 + 1.5 ∗ IQR] contains 99.3% of data. Therefore,
points outside this interval are considered as an anomaly [16].

Finally, the above output is post-processed using a low-pass filter through
which the sudden variations are removed, decreasing the number of false alarms
[16]. The flow chart of the framework is shown in Figure 2.

5 Case Study

A data-driven fault detection framework is developed that issues an alert when-
ever one of the key components in a specific bus exhibits an abnormal behaviour.
The focus of the study is on the readings from ten sensors (e.g., wet tank air
pressure, engine speed, engine load) installed on the bus by which real-time data
was logged at 1 Hz frequency by an on-board embedded device. The anomaly
detection framework performs data pre-processing, learns a network to combine
several sensors readings, and identifies anomalies in sensor readings that can be
symptoms of imminent faults. In order to evaluate the performance of the pro-
posed framework, we compare the alarms raised by the framework against bus
repair records.
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Fig. 2. Flow chart of fault detection framework.

Analysis and cleaning of the Input Data. To reduce the influence of noisy
data and outliers, we remove the high-frequency noises through a low pass filter
(LPF) in pre-processing stage of data [2]. It encourages training data distri-
bution to be close to the Gaussian distribution. In other words, the goal is to
reconstruct the noisy data so that its distribution becomes similar to the normal
distribution. Figure 3 shows the measured data of “engine speed” sensor during
a short duration. The blue curve shows the raw data before filtering, and the
data after filtering is shown in red. It is visible that the variations of raw data
over time are very noisy, which can be further smoothed by the LPF.

Fast Fourier Transform (FFT) of the raw and filtered data on the frequency
domain is shown in the right part of Figure 4. It shows that the raw data with
frequencies less than 0.1 Hz have higher FFT values while the data with fre-
quencies higher than 0.1 Hz have almost similar low FFT values indicating the
specification of white noise. Figure 4 left shows the Probability Density Func-
tion (PDF) for the raw and the filtered engine speed data. The PDF of raw
data (blue curve) shows a sideband peak around the main peak, which can be
removed through filtering (red curve).
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Fig. 4. The Probability Density Function - PDF (left) the Fast Fourier Transformation
- FFT (right) for raw and filtered engine speed data.

Feature extraction After cleaning, the raw data must be parsed to extract rel-
evant information that could allow us to detect suspicious behaviours. Although
the autoencoder reduces the dimension of multivariate data points to improve
the network’s performance, raw data with a large learning dimension cannot be
directly applied. Therefore, statistical values of the multivariate time series in an
selected sliding time window are used as input into the network. These statistical

values (features) for jth sensor include mean, x
(1)
j , standard deviation, x

(2)
j , skew-

ness, x
(3)
j , kurtosis, x

(4)
j , quantiles, {x(5)

j , . . . , x
(8)
j }, and deciles {x(9)

j , .., x
(18)
j },

approximating the original raw data. Thus, through the pre-processing, for each
sensor in a sliding time window 18 statistical features are computed; i.e., the
dimension of the input to the network is 180 for 10 sensors. This conversion
reduces the dimensionality and better expresses the characteristics of the data.

Anomaly Detection As mentioned earlier in Section 4, through the Boxplot
analysis, the distribution of all RMSEtrain

r is obtained, and its maximum value
is set as a threshold (thr) with which normal and abnormal data in the test
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Fig. 5. The Boxplot analysis of the RMSE of training dataset.

dataset are labelled as 0 and 1, respectively. Alternatively, the RMSE could
be computed using a separate validation dataset, however, we found it does not
make a significant difference. Figure 5 shows the Boxplot of all RMSEtrain

r . Note
that thr is calculated for the training dataset to identify abnormal behaviours of
the test dataset, i.e., if RMSEtest

r > thr then the respective sliding time window
is detected as an anomaly.

6 Experimental results

This section presents and discusses the experimental results of the case study in-
troduced in Section 5. We consider two different downtimes of the bus: unplanned
and planned interruptions. The former occurs when one of the bus systems fails;
i.e., the vehicle may be inoperable and towed to the workshop for repair, while
the latter happens when the workshop personnel determines that a system is not
functioning satisfactorily and decides to repair or replace it. A failure report pro-
vided by the company (see Table 3) describe repair information, particularly the
date and operations performed and some comments. These off-board data makes
it possible to evaluate true and false, positive and negative, alarms raised by the
proposed anomaly detection framework. In order to evaluate the performance of
the proposed solution, we report the following metrics: Recall, Precision, and F1
Score (%).

Impact of Size of Sliding Window Here, we evaluate the impacts of different
sizes (ranges from a smaller window size 1min to a larger window size of 10min)
of the sliding time window on the performance of the proposed framework. Note
that the sliding time window with the same size is applied for the training and
test datasets. Table 1 shows the metrics for the framework using W1, W2,.., W10,
i.e., sliding time windows with length 1min, 2min,.., 10min, respectively. The
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results shown (in bold) indicate that the sliding time window of size 4min (W4)
leads to the largest value of TP and the lowest value of FP . Generally speaking,
the value of TP decreases with increasing the sliding time window length but
the FP s increases alongside.

Table 1. Effect of sliding time window size in performance of LSTM-AE

Metrics W1 W2 W3 W4 W5 W6 W7 W8 W9 W10
TP 14 17 18 22 19 16 14 12 11 12
FP 5 4 4 3 4 6 6 4 7 8
FN 12 9 8 4 7 10 12 14 15 14
Recall(%) 53.8 65.4 69.2 84.6 73.1 61.5 53.8 46.1 42.3 46.1
Precision(%) 73.7 80.9 81.8 88.0 82.6 72.7 70.0 75.0 61.1 60.0
F1 Score(%) 62.7 72.3 75.1 86.2 77.5 66.6 60.8 57.1 49.9 52.1

Comparison of LSTM-AE and mlAE For evaluation purposes, we exper-
imentally studied and tuned different LSTM-AE settings, and then the perfor-
mance of the LSTM-AE was compared versus the mlAE. Since the network
topology needs to be consistent with the experimental settings, we explored sev-
eral structures for the network and selected the one that leads to optimal per-
formance in the learning and prediction stages. The parameters are summarised
in Table 2.

Table 2. Parameters of the LSTM-AE and mlAE.

Parameter LSTM-AE mlAE
Nodes in input layer 160 160
Neurons in the 1st hidden layer 120 100
Neurons in the 2nd hidden layer 60 50
Neurons in the 3rd hidden layer 30 25
Neurons in the Bottleneck layer 15 -
Dropout 20% -
Learning rate 1e-3 1e-3
Batch size 100 50
Number of epochs 300 300

Figure 6 illustrates the estimated normal data and anomalies, over time,
for the LSTM-AE and the mlAE. The x and y axes, respectively, represent
date/time and the value of RMSEr, changes between one (anomaly) and zero
(normal). The areas highlighted in pink and light green rectangles, respectively,
show the unplanned and the planned failures reported by the company (see
Table 3, columns “Mode”, “Start time” and “End time”). Since detecting a
specific anomaly is not sufficient to conclude a persistent failure, the network
generates an alarm when a sequence of anomalies is predicted at least for two
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hours. The predicted alarms by the proposed framework are reported under the
“Failure alarm” column in Table 3.

Fig. 6. The output of LPF over-time for the LSTM-AE (green) and mlAE (red); data
above 0.5 (empirically set) are predicted as anomalies. The pink and light green rect-
angles indicate the unplanned and planned failures reported by the company.

Table 3. Failures reported by the company and start time of failure alarm.

Nr. Mode Start time End time Failure alarm
#1 planned 2012-02-02 2012-02-09 2012-02-01
#2 planned 2012-03-01 2012-03-02 2012-02-29
#3 unplanned 2012-03-05 2012-03-05 2012-03-03
#4 unplanned 2012-03-16 2012-03-19 2012-03-14
#5 unplanned 2012-04-01 2012-04-13 2012-03-31
#6 planned 2012-05-29 2012-05-29 2012-05-29
#7 unplanned 2012-07-10 2012-07-23 2012-07-10
#8 planned 2012-08-21 2012-08-23 2012-08-21
#9 unplanned 2012-10-08 2012-10-08 2012-10-08
#10 planned 2012-12-27 2012-12-28 2012-12-25
#11 planned 2013-02-19 2013-03-06 2013-02-19
#12 unplanned 2013-04-23 2013-04-24 2013-04-22
#13 unplanned 2013-04-29 2013-04-29 -
#14 unplanned 2013-07-11 2013-07-19 2013-07-11
#15 planned 2013-08-12 2013-08-16 2013-08-12
#16 unplanned 2013-12-11 2013-12-19 2013-12-10
#17 planned 2014-01-09 2014-01-09 2014-01-09
#18 planned 2014-01-31 2014-02-11 2014-01-31
#19 unplanned 2014-02-23 2014-02-23 2014-02-22
#20 unplanned 2014-03-13 2014-03-20 2014-03-12
#21 unplanned 2014-04-14 2014-04-14 2014-04-13
#22 unplanned 2014-04-20 2014-04-20 -
#23 unplanned 2014-06-08 2014-06-08 2014-06-05
#24 unplanned 2014-08-14 2014-08-15 -
#25 planned 2014-09-03 2014-09-05 2014-09-03
#26 planned 2014-11-28 2014-11-28 -
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From the table, we observe that the predicted date for some of the failures is
the same as the date reported for failure (“Start date”) by the company. Since
it is not available at a specific time during the day for the reported failures, it
is not possible to compute the exact time (in hours) of the alarms prior to the
failures. A detailed comparison between the performance of the two networks is
reported in Table 4 where the LSTM-AE obtains a higher Recall, Precision, and
F1 Score than those using mlAE.

Table 4. Performance comparison of LSTM-AE and mlAE

Threshold=0.5 Threshold=0.7
Metric Multi-layer AE LSTM AE Multi-layer AE LSTM AE
TP 19 22 20 22
FP 8 5 4 3
FN 7 4 6 4
Recall(%) 73 84 76 84
Precision(%) 70 81 83 88
F1 Score(%) 71 82 84 86

7 Conclusions

We propose a data-driven anomaly detection framework based on deep learn-
ing for multivariate time series. We compared two networks, the LSTM-AE and
mlAE, which fuse the real-valued data from sensors installed in a bus, com-
press them and reconstruct to detect anomalies. Raw data are pre-processed
to remove noisy data and outliers. Then, statistical parameters of the data are
used as features to detect sequences of abnormal operation, since detecting a
single instance of abnormal reading is not sufficient to make conclusions about
a component failure. Results from analysing the data collected over a period of
approximately three years shows that the LSTM-AE has performance superior
over that of the mlAE.

Future work includes experiments on rule-based models to explain detected
faults and empirically investigate larger datasets, for example from a fleet of
vehicles.
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