
Hierarchical Multi-class Classification for Fault Diagnosis

Pablo del Moral

E-mail: pablo.del moral@hh.se

Sławomir Nowaczyk

E-mail: slawomir.nowaczyk@hh.se

Sepideh Pashami

E-mail: sepideh.pashami@hh.se
CAISR, Center for Applied Intelligent Systems Research, Halmstad, Sweden

This paper formulates the problem of predictive maintenance for complex systems as a hierarchical multi-class
classification task. This formulation is useful for equipment with multiple sub-systems and components performing
heterogeneous tasks. Often, the data available describes the whole system’s operation and is not ideal for accurate
condition monitoring. In this setup, specialized predictive models analyzing one component at a time rarely perform
much better than random. However, using machine learning and hierarchical approaches, we can still exploit the
data to build a fault isolation system that provides measurable benefits for technicians in the field.
We propose a method for creating a taxonomy of components to train hierarchical classifiers that aim to identify the
faulty component. The output of this model is a structured set of predictions with different probabilities for each
component.
In this setup, traditional machine learning metrics fail to capture the relationship between the performance of the
models and its usefulness in the field. We introduce a new metric to evaluate our approach’s benefits; it measures the
number of tests a technician needs to perform before pinpointing the faulty component.
Using a dataset from a real-case problem coming fro the automotive industry, we demonstrate how traditional
machine learning performance metrics, like accuracy, fail to capture practical benefits. Our proposed hierarchical
approach succeeds in exploiting the information in the data and outperforms non-hierarchical machine learning
solutions. In addition, we can identify the weakest link of our fault isolation model, allowing us to improve it
efficiently.

Keywords: Fault Diagnosis, Multi-class Classification, Hierarchical Classification, Automotive Industry, Integral
Fault Diagnosis, Structure Prediction

1. Introduction
Monitoring complex equipment for maintenance
purposes is of great interest to the industry. Know-
ing the system’s state allows us to devise main-
tenance strategies that optimize uptime, reduce
maintenance costs, and increase reliability.

In the literature, there are two main groups
of industrial applications for automated self-
monitoring tasks. The first is simple machines,
and the second is complex safety-critical systems.
The perfect representative of the first group is
the monitoring of rolling bearings using vibration
measurements; in this case, there is an expected
physical relation between the component’s health
and the data collected. An example of the second
group is the monitoring of aircraft; the criticality
of these systems justifies the cost of installing an
extensive network of sensors and processing the
resulting amount of data. The common character-

istic of these two scenarios is that the resulting
models are objectively very accurate – either be-
cause the problem is simple or because the infor-
mation we have is quite exhaustive.

Motivated by the interactions with our indus-
trial partners from the automotive and health care
industry, we want to focus on a rarely-tackled third
type of scenario, which is quite different from
the previous two. A vehicle is a quite complex
machine comprising multiple heterogeneous sub-
systems responsible for various tasks. However,
the economic benefits of an extensive network
of sensors do not justify the cost of installation,
processing, storing, and modeling of the data. On
the other hand, dividing it into simple compo-
nents and providing hundreds of per-component
condition monitoring solutions is not any cheaper.
It also neglects to consider the behavior of the
vehicle as a whole and the interactions between

Proceedings of the 31st European Safety and Reliability Conference
Edited by Bruno Castanier, Marko Cepin, David Bigaud, and Christophe Berenguer
Copyright c© ESREL 2021.Published by Research Publishing, Singapore.
ISBN: 978-981-18-2016-8; doi:10.3850/978-981-18-2016-8 524-cd 2457

Proceedings of the 31st European Safety and Reliability Conference 2458

subsystems.
In the past decades, more and more sensors

have been installed in vehicles and similar types
of machines. The data available is not collected
with the design of a monitoring system in mind,
but mainly for other purposes such as compli-
ance with regulations, control, safety or security.
With this data, an accurate description of the ma-
chine’s state in general, and each of its compo-
nents specifically, is not possible. This leads to an
important qualitative difference between this third
scenario and the previous two – objectively, the
models that can be created are quite inaccurate. At
this stage, the requirement from a company is to
find value in the existing data and identify the next
steps to create a successful monitoring solution.

In this paper, we focus on the problem of fault
diagnosis in the framework of automated monitor-
ing. Given a breakdown of a machine, we want to
discover which specific component is responsible
for the fault. To build our models, we use the
sensor data describing the operation of a fleet of
trucks and the historical logs of their repairs.

The output of our machine learning models
must be exploited by the technician carrying out
the maintenance operation. Surprisingly enough,
the link between the usefulness of the solution and
the evaluation of the machine learning models has
not been studied extensively in the literature.

We propose a simple framework for an expert
to interact with our models. The technician se-
quentially tests the components identified by our
models as the most likely to be faulty, one by one.
This framework offers us a way to evaluate how
useful the models will really be, based on how
many tests must be performed before the fault is
isolated. We will demonstrate how traditional per-
formance metrics used within the machine learn-
ing community do not necessarily correspond to
this practical utility.

In this scenario, we assume that classification
models will have a low performance at the com-

Fig. 1. An example of an extracted hierarchy with 17
components. On the y-axis, we can see the expected
quality of the split. The name of the components has
been anonymized.

ponent level. However, we should be able to find
multiple groups of components that can be easily
distinguishable by a classifier. In our approach, we
first create a taxonomy by automatically extract-
ing a hierarchy of components (see Fig. 1) from
the data. We later use this taxonomy to build a
hierarchical classification model: training binary
classifiers at every node of the hierarchy to dis-
criminate between this node’s children.

We compare our hierarchical classifiers’ results
against a classifier that does not take into ac-
count the hierarchical structure. We show how our
method of extracting hierarchies helps us to create
models that outperform non-hierarchical ones in
terms of the usefulness for the technician making
the diagnosis – even though they perform very
similar in terms of classification accuracy.

Finally, we use the structure of the hierarchy to
identify which nodes of our hierarchy corresponds
to the weakest models. We use this information to
identify where to install an extra sensor tailored
to enhance the performance of this model. We
simulate the addition of this sensor to enhance the
performance of the models in different nodes of
the hierarchy and evaluate its benefits.

2. Literature review
Self-monitoring of industrial equipment has be-
come a hot topic, especially in the context of
Industry 4.0 Yan et al. (2017), Li et al. (2017).

There are examples of data-based models ap-
plied to critical systems. In Verhagen and Boer]
(2018), the authors propose a data-driven fault
prediction architecture for different components
of an aircraft. In their case, they use 1597 features
to build their models. In Michau et al. (2017), the
authors present a solution to detect and isolate
faults in a power plant generator using readings
from 320 sensors. In Canizo et al. (2017), the au-
thors present an architecture to predict failures in
wind turbines using 552 features, including sensor
readings and alarm signals. In all these cases, there
is an extensive network of sensors describing the
functioning of the system.

On the other side, we can find a body of re-
search focused on monitoring simple systems with
few sensors. These approaches are based on phys-
ical modeling and signal analysis. In Lei et al.
(2020), we can find an extensive survey on this
type of systems, especifically on bearings, gears,
motors and engines.

Regarding fault diagnosis, we can see two main
lines of research : signal importance methods and
supervised methods.

In the first group, we can find Cheng et al.
(2016). In this work, the authors analyze the cor-
relation between different signals before and after
a failure. Using causality, they trace back the orig-
inal signals responsible for the fault. In Michau
et al. (2017), the authors first trained a classifica-

Proceedings of the 31st European Safety and Reliability Conference 2459

tion model to predict whether a fault is going to
occur or not. Then, when a fault is predicted, they
trace back the signals most responsible for the pre-
diction. These works are based on the assumption
that the signal recorded by a sensor can identify a
particular component.

Necessarily, the problem of supervised classi-
fication for fault diagnosis is a multi-class clas-
sification problem. An example of a supervised
method for failure diagnosis is Wen et al. (2018).
In this work, authors use convolutional neural net-
works on three different types of machinery with
10, 4, and 2 types of failures, respectively. They
evaluate their results based on global and per-
component accuracy. In Baraldi et al. (2016), the
authors use multi-class classification to identify
different types of failures for the same component.
In their case, they also evaluate their approach
based on global and per-component accuracy.

3. Motivation
In this paper, we formulate the problem of fault
diagnosis as a multi-class classification problem.
In other words, once we have a faulty machine,
we want to identify which of its many components
is responsible for the fault. We want to introduce
hierarchical multi-class classification for fault di-
agnosis. It uses a hierarchy of classes (in our case,
components of the machines) in the shape of a
tree. Starting with all components grouped at the
root of the tree, we will train a classifier at each
node to separate the left sub-branch components
from those part of the right sub-branch.

This classification task aims to assist the techni-
cian in performing the diagnosis on the machine,
reducing the amount of work needed to find a
fault. The first thing we need to do is to define
a framework in which our models and the techni-
cian can interact. We propose the following setup,
which we believe is quite realistic, although, of
course, more sophisticated alternatives are also
possible. The output of a classification model is
a numeric vector of probabilities, indicating how
likely it is for each component to be the one
responsible for the fault. The technician receives
this input, selects the component with the highest
probability, and performs a test to validate the
predictions. In the simplest case, the test could be
to replace the component and see whether the ma-
chine is now fixed, but exact details of that are not
critical for our further analysis. If the component
is not faulty, the technician will move to the next
most likely one until he finally finds the fault.

The quality of any model in this framework
can be evaluated based on its utility. We measure
this utility by counting the number of tests that
the technician needs to perform to identify the
faulty component. In the experiments presented
here, our technician is “simulated”: based on the
ground truth, we always know how many tests are

necessary to find the real fault for every possible
classifier output. We will make three assumptions
to make the experimental evaluation simpler: all
the tests consider a single component, the cost of
every test is the same, the tests are perfect.

These assumptions do not necessarily hold. The
framework proposed here can be easily extended
to more complex cases, but doing that here would
distract from this work’s central message. In
practice, the technician can often perform multi-
component tests, i.e., evaluate groups of compo-
nents rather than individual ones. For example,
if the engine of a truck does not start, one could
easily discard the braking system as a possible
fault. In this work, we do not consider such a
possibility since it is usually not obvious which
groups are realistic. Such information, if available,
would be beneficial and could be used to adapt our
hierarchical approach that is built. Unfortunately,
we have no access to it in the use-case we study
in this paper. The other possible extension is for
each of the tests to have different costs, which can
be monetary, timely, etc. Again, without domain
knowledge, it is not possible to account for that –
even though incorporating such information into
our evaluation would provide additional benefits.

We expect that the symptoms of failures from
components that perform similar tasks or are part
of the same subsystem will be very similar. In
these circumstances, the performance of a classi-
fier that separates each of the components of the
truck will be low. However, we also expect dif-
ferent groups of components to have very distinct
effects on the data. For example, an electrical fault
and a fault in the braking system should have very
different symptoms and thus be represented in the
data in a quite distinct way. Our idea of a good
hierarchy is the one that captures these similarities
and dissimilarities between the components. By
training classifiers to separate easily distinguish-
able sets of the components on the hierarchy’s
higher levels, we can avoid unnecessary classifi-
cation errors. On the other hand, near the bottom
of the hierarchy, we can build specialized classi-
fiers to distinguish between those components that
have a similar effect on the data, which can lead to
better performance.

Using hierarchies for fault diagnosis is con-
sistent with how manual fault diagnosis is typi-
cally made. The manual fault diagnosis method
can be regarded as a hierarchical structure. The
technician follows a deductive process, perform-
ing tests and isolating the faulty component. A
hierarchical structure of components can accom-
modate this type of process and accommodate
multi-component testing naturally.

Proceedings of the 31st European Safety and Reliability Conference 2460

4. Method

4.1. Data
For this work, we use the data provided by one of
our industrial partners, Volvo Trucks. We perform
our analysis on a fleet of approximately 4000
trucks operating in Europe for three years. We
will use two sources of data: operational data and
repair logs.

The operational data consists of on-board sen-
sor readings, presented as interpolated times-
tamped instances with two weeks frequency. In
total, our dataset has 365 different numerical fea-
tures collected from these sensors. In addition,
we have 74 categorical features describing the
particular configuration of each truck.

The repair logs contain information about the
workshop visits of each truck. They specify which
components have been replaced and when. It is
important to notice that this information includes
both replacements due to a breakdown and a
scheduled maintenance operation. Some of the
replaced components might not have been faulty
at the time of replacement, which adds an extra
layer of uncertainty. The name of the components
have anonymized.

4.2. Processing of the data
We characterize each visit to the workshop with
two months of operational data previous to that
visit. On average, this means about four data in-
stances. Since we intend to emulate the real de-
ployment of a fault isolation system, we use the
initial two-thirds of the visits as training, and the
rest for testing and evaluation of the models. It is
important to guarantee that we never use future
data to classify any of the failures.

There are 284 different components in this
dataset and 365 different sensors describing the
general state of the truck. We assume that for
most components, their failures will be hard to
identify since the data can not provide a relevant
description for each of them.

We aim to discover the relationships between
the symptoms of different components’ failures.
Then, use this information to extract a hierarchy
that encodes these relationships.

First, we need to make sure that a particular
repair is due to a component failure and not an
scheduled maintenance operation. We assume that
by selecting those components that are rarely re-
placed simultaneously on the same truck, we can
filter out most of the regular maintenance opera-
tions.

Then, using only the training set, for each com-
ponent, we train a simple classifier to distinguish
between the visits to the workshop when the com-
ponent was replaced and the rest of the visits.
Using stratified (based on the truck identity) cross-
validation, we can get an estimate of how much

predictive power there is in the data and we can
rank the components from easier to harder to pre-
dict a failure.

We want our diagnostic system to be integral,
i.e., identify the failures of all possible compo-
nents. We have already stated that for many com-
ponents this will be possible. However, we want
our model to include the information of what can
and can not predicted. Therefore, once we have
selected a group of components that can be pre-
dicted, we label each visit in the training set with
the component that was replaced during that visit.
If none of the selected components is replaced, we
use an extra class, called “other.”

4.3. Extracting the hierarchy
To extract the hierarchy of selected components,
we follow a greedy top-down algorithm. Start-
ing with all the classes, we want to find a way
of splitting them in such a way that a classifier
trained to distinguish the “left” group from the
“right” group has the highest possible accuracy.
This process is repeated recursively, building a
tree until individual components are placed at the
leaves (see Fig. 1).

The number of possible splits is prohibitively
large even for a modest number of components.
There are 511 possible splits for a node with 10
components, more than a million for anode with
21 components. Given that trying every alternative
is not feasible, we use an off-the-shelf genetic
algorithm from the r package GA (with default
parameters) to find a near-optimum solution. First,
we train a single classifier on the full dataset us-
ing 5-fold stratified (based on the truck identity)
cross-validation and keep the probability predic-
tions.

As an evaluation function for the genetic al-
gorithm, we are going to use the area under the
ROC curve function estimated from the 5-fold
cross-validation. Instead of training a new classi-
fier, we will use the probability predictions from
the single classifier. As an example, in Fig. 1,
we want to evaluate the split between the com-

Fig. 2. Workflow of our method. Different steps cor-
responding with each section are in a different color.

Proceedings of the 31st European Safety and Reliability Conference 2461

ponents {“fgSs”, “gors”}, and “giSJ”. We create
a meta-class “left” that combines the probability
predictions of “fgSs” and “gors”, and a meta-
class “right” that does the same for the “giSJ”.
Equipped with the probability predictions of the
“left” and “right” classes and the ground truth, we
calculate the area under the ROC curve. This is
the final output of the evaluation function. We let
the genetic algorithm run until it can not find a
better solution for more than 10 iterations. The
final output of the genetic algorithm will indicate
us how to split into two groups the comonents of
a node.

To accommodate the “other” class, we artifi-
cially place it at the top of the hierarchy. In this
way, the hierarchical model first decides whether
a new instance is part of our group of selected
components. If yes, it then identifies which of
them is responsible for the fault.

Once we have extracted the hierarchy, we train
new classifiers at each node, with the goal to dis-
tinguish all the components of the left sub-branch
from the components on the right sub-branch.

4.4. Inference
To obtain a prediction from the hierarchical
model, all the individual models at the nodes are
evaluated, and their probabilistic output are prop-
agated from the root of the hierarchy to the leaves.
As an example, the final probability prediction of
class “gddg” in Fig. 1 would be the probability of
the classifier at the top node to choose left, times
the probability of the classifier at the next node to
choose left, times the probability of the classifier
at the next node to choose right.

In our data, for both test and training sets, each
of the visits to the workshop is characterized by
the last four instances in the dataset. To output a
final prediction, we run each of the four instances
through our hierarchical classifier. The prediction
on each instance is a vector of probabilities, as-
signing a number between 0 and 1 to each of the
components. We expect that a fault has a more sig-
nificant effect on the data as time evolves; there-
fore, the final prediction for a visit is a weighted
average of its four instances, assigning a larger
weight to the instances closer to the workshop
visit.

5. Experiments
We expect to observe a measurable improvement
after using our extracted hierarchy for building
our models, compared to models that do not take
into account this structure. How beneficial they
can be depends on two factors: the number of
components and the complexity of the task.

Our extracted hierarchy will be helpful if it can
capture the interesting relationships of similarity
and dissimilarity between the different compo-

nents. We assume that there exist different lev-
els of similarity. For example, the faults of two
components of the braking system will have very
similar effects on the data, and they will be more
similar to the faults on components of the steering
system than to the faults on components of the air
conditioning system.

If we had a classifier that obtains perfect classi-
fication score, there would not be any added value
from using a hierarchical structure – as the models
become better, there is less and less room for im-
provement. An equivalent statement can be made
about very poor models whose outputs are random
– since there is no useful information about any
of the components, grouping them together in a
smart way has nothing to exploit. In both cases,
the explanation is the same: all components are
equally similar, i.e., there is no structure (see Fig.
3). We will only see a benefit in using hierarchies
when non-hierarchical classifiers fail to account
for the structure in the similarity of components.

With very few components, there is not much
structure to exploit. With more components, we
can expect more complex and heterogeneous rela-
tionships of similarity. Deciphering these increas-
ingly complex relationships and encoding them in
a hierarchy will boost the performance of hier-
archical classifiers compared to non-hierarchical
ones. However, as the number of components
continues to grow, the complexity of the task in-
creases to the point where individual base classi-
fiers cannot cope with it.

Fig. 3. For classifiers that achieve high or low perfor-
mance classification, the benefits of a good hierarchy
will not be noticeable.

5.1. Experimental setup
For our experiments, we select subsets of compo-
nents based on the two criteria presented in the
method section. First, we filter out the components
that are usually replaced simultaneously with oth-
ers. Then, we pick a subset of components with
the highest predictive power. We present below
our results for seven differently-sized subsets of
components, based on seven different thresholds
of how easy they are to diagnose individually. In

Proceedings of the 31st European Safety and Reliability Conference 2462

the rest of this section, we summarize our major
findings.

As a base classifier, we use a decision tree
classifier, as implemented in the r package rpart.
Through 5-fold cross-validation, we will tune the
regularization parameter cp and the number of
instances per leaf minleaf.

5.2. Accuracy
First, we measure the accuracies of a single and
a hierarchical classifier. In table 1, we can see
the comparison. There does not exist a clear
difference between the accuracies of the non-
hierarchical and the hierarchical classifiers.

As we increase the number of components,
there is a clear drop in the accuracy. This is an
expected result. Every visit to the workshop that
does not include any of the selected components
is labeled with the “other” class. This means that
the lower the number of selected components,
the more dominant the “other” class is. Besides,
we have selected the components based on their
predictive power, so the subsets with more com-
ponents are on average harder to predict.

Table 1. Accuracy of a single classifier and a
hierarchical approach with different sets of selected
components.

Accuracy

Comp Single Hierarchical

12 0.91 0.91

17 0.85 0.86

20 0.80 0.82

24 0.73 0.71

28 0.70 0.67

32 0.68 0.70

42 0.5 0.52

5.3. Number of interventions.
In Table 2, we can see the comparison of a single
and a hierarchical classifier based on the number
of tests needed to isolate the faulty component.

With very few components, there does not ex-
ist a significant difference between the two ap-
proaches. However, as we add more components,
the differences increase – in favor of the hierar-
chical approach. As we expected, as the number
of components increases, so does the complexity
of the relationship between them. Our hierarchical
approach is able to encode these complex relation-
ships and boost the performance.

Nevertheless, as we continue to increase the
number of components further, we see that this
difference begins to decrease. By adding new
components to our subset, we are introducing

components with lower predictive power, and
making the complete problem harder, until the
benefits of hierarchy disappear.

We only show the average number of tests when
the component replaced is among the selected one.
Realistically, we can not consider the “other” class
as equivalent, since it consists on many differ-
ent components and no single test could tell us
whether the faulty component is part of it or not.
Since we are placing the “other” class at the top of
the hierarchy, we do not expect to have significant
differences between the single classifier and the
hierarchical one in how they identify it.

T

Table 2. Number of tests needed to isolate the
faulty component, when the faulty component is
among the selected ones.

of Tests

Comp Single Hierarchical

12 3.16 3.45

17 7.48 7.28

20 12 7.61

24 8.86 6.89

28 6.77 5.93

32 7.52 6.96

42 7.50 7.56

If we had evaluated our hierarchical approach
only based on accuracy, we would have concluded
that it does not provide any measurable improve-
ment. However, in a more realistic scenario of in-
teraction with the technician carrying out the diag-
nostics, we can measure significant benefits. Our
hierarchical approach does not provide a better
classification performance in the per-component
level; however, by grouping the components at
different levels, it allows us to create better models
in these intermediate levels. It is precisely this
structure in the predictions that can be exploited.

We are choosing subsets of components using
a ranking of how predictable they are. The more
components we add, the lower the average pre-
dictive power will be. With 20 components, we
were able to obtain the maximum added value of
using hierarchical classification. We can assume
that there exists some structure in the components
and that our hierarchy has captured it.

However, that benefit disappears as we add
more components to our subset. If we add a
component with a low predictive power, and it is
equally similar to the rest of the components, there
is not a clear, logical position in the hierarchy
to place it. For example, in Fig. 1, if we wanted
to add a component with a predictive power of
0.6 with respect to the rest of components, we
could place it together with “JoIs” and “rSir”
components, but then the predictive power of that

Proceedings of the 31st European Safety and Reliability Conference 2463

group with respect to the “Jfds” would drop, and
not be 0.92 anymore. Adding a component with
low predictive power adds noise not only to our
classifiers, but also to our method of extracting
hierarchies.

It is critical to identify which subsets of com-
ponents boost the performance of the hierarchical
approach when compared to the non-hierarchical
one. We need enough components so that there
exists a complex structure that can be exploited,
but we also need to keep in mind that components
with very low predictive power will actually harm
the hierarchy extraction.

5.4. Enhancing the hierarchy
If we want to enhance the overall performance
of the diagnosis system, we need better data by,
for example, adding new sensors to the machine.
Encoded in the hierarchy is the information of
similarity and dissimilarity between components
based on their effect on the data. We can analyze
this information to identify what kind of data is
needed to obtain the biggest benefit.

In this experiment we simulate the installation
of a new sensor that helps us enhancing the per-
formance of the hierarchical model. It is not rea-
sonable to assume that there exists a sensor that
could distinguish between two random sets with
an arbitrary number of components. However,
we assume that it is possible to install a sensor
that could distinguish between any two individual
components.

Fig. 4. Relative improvement of the number of tests
to isolate the selected components as a function of the
quality of the split as measured in the hierarchy.

Using the hierarchy, we can identify which pair
of components are harder to distinguish. We sim-
ulate this sensor by adding a feature highly corre-
lated with the true class when it is one of the two
components and random otherwise. For this ex-
periment, we choose the case with 42 components.
We choose the 14 nodes of the hierarchy where
two components are distinguished. For each node,

we simulate the addition of the new sensor and
reevaluate the number of tests needed to isolate
those two components. In Fig. 4, we can see the
relationship between the relative improvement in
the number of tests and the quality of the split
as measured in the height of the hierarchy. The
components at those nodes that are lower in the hi-
erarchy present the larger benefit from adding the
new sensor. However, for those nodes where the
classifiers were already good enough, the benefit
is smaller.

6. Conclusions and future work
In this paper, we have shown that multi-class clas-
sification can be used in the field of maintenance
in general, and fault diagnosis in particular.

We have introduced a hierarchy of components
as a logical way to structure the output of our
models. The motivation to use hierarchies is that
there exists a structure in how the components
relate to each other, i.e., we assume that some
components are more similar than the others in
how they affect the data. We have shown that this
assumption holds and that this type of structure
has proven to give measurable benefits when com-
pared to approaches that do not take into account
the structure of components.

We have established a framework for how the
field technician and the classification models can
interact. We have evaluated our models with a
simple measure of usefulness. We have shown that
the most traditional machine learning metrics fail
to capture the practical utility in this framework of
interaction.

A hierarchy comes with its inconveniences. The
main prerequisite for a hierarchy to be useful is
that each of the components has different rela-
tionships with the rest of the components. If this
assumption does not hold, and there is no structure
in how components relate to each other, a hierar-
chy might not be the best option.

It has proven to be crucial to identify which
components to include in the hierarchy and which
not. With the right selection, we can see signifi-
cant improvements in a hierarchical classifier over
a non-hierarchical one. However, these benefits
can disappear if we include the wrong compo-
nents.

One of the main advantages of this type of
hierarchies of components is that it allows us to
identify where the models are failing, allowing us
to redesign and enhance our diagnostic solution.
We have shown a simple example of how this
can implemented, by simulating the addition of a
sensor to distinguish between two specific compo-
nents.

We believe that the benefits of using extracted
hierarchies shown in this paper are just the starting
point of how hierarchies can be exploited.

Hybrid hierarchies that incorporate the expert

Proceedings of the 31st European Safety and Reliability Conference 2464

knowledge and automatically generated relation-
ships between components look like a promising
idea. We can add multi-component testing, and
have a more precise evaluation based on the dif-
ferent costs of different tests. We can enhance
our diagnostic solution by adding sensors that can
distinguish different groups with different number
of components, and this information can be coded
as well in the hierarchy.

Finally, we have limited ourselves to work with
multi-class classification. However, in this type of
systems, several components can be faulty at the
same time. The obvious next step in this direc-
tion would be to introduce multi-label classifica-
tion. Multi-label classification allows for a new
instance to be classified into more than one class.

References
Baraldi, P., F. Cannarile, F. Di Maio, and E. Zio

(2016). Hierarchical k-nearest neighbours clas-
sification and binary differential evolution for
fault diagnostics of automotive bearings oper-
ating under variable conditions. Engineering
Applications of Artificial Intelligence 56, 1–13.

Canizo, M., E. Onieva, A. Conde, S. Charra-
mendieta, and S. Trujillo (2017). Real-time
predictive maintenance for wind turbines using
Big Data frameworks. 2017 IEEE International
Conference on Prognostics and Health Man-
agement, ICPHM 2017, 70–77.

Cheng, W., K. Zhang, H. Chen, G. Jiang, Z. Chen,
and W. Wang (2016). Ranking causal anoma-
lies via temporal and dynamical analysis on
vanishing correlations. In Proceedings of the
22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp.
805–814.

Lei, Y., B. Yang, X. Jiang, F. Jia, N. Li, and
A. K. Nandi (2020). Applications of machine
learning to machine fault diagnosis: A review
and roadmap. Mechanical Systems and Signal
Processing 138, 106587.

Li, Z., Y. Wang, and K. S. Wang (2017). Intel-
ligent predictive maintenance for fault diagno-
sis and prognosis in machine centers: Industry
4.0 scenario. Advances in Manufacturing 5(4),
377–387.

Michau, G., T. Palme, and O. Fink (2017). Deep
feature learning network for fault detection and
isolation. In Proceedings of the Annual Con-
ference of the Prognostics and Health Manage-
ment Society, PHM.

Verhagen, W. J. and L. W. D. Boer] (2018). Pre-
dictive maintenance for aircraft components us-
ing proportional hazard models. Journal of
Industrial Information Integration 12, 23 – 30.

Wen, L., X. Li, L. Gao, and Y. Zhang (2018). A
new convolutional neural network-based data-
driven fault diagnosis method. IEEE Trans-
actions on Industrial Electronics 65(7), 5990–

5998.
Yan, J., Y. Meng, L. Lu, and L. Li (2017). Indus-

trial Big Data in an Industry 4.0 Environment:
Challenges, Schemes, and Applications for Pre-
dictive Maintenance. IEEE Access 5, 23484–
23491.

