Examensarbete
Dataingenjor 180hp

Azure Policy Definition Builder

Examensarbete 15hp

Halmstad 2021-06-06
Kevin Brandhild

HOGSKOLAN
| HALMSTAD

Preface

I would like to thank my supervisor Galina Sidorenko for helping me through
the project. With her guidance, the thesis progressed smoothly. I would also
like to thank Ombori for allowing me to tackle this project. Specially Zsolt Halo
who helped me when I got stuck and listened to the different ideas and thoughts
regarding the project.

ii

iii

Abstract

Cloud technologies are spearheading today’s innovation and automation efforts.
With the use of Azure Policy it is possible to govern Azure resources and ser-
vices through customized Azure policy definitions.

This project aims to simplify the creation process for the Azure policy defini-
tion by creating a web-application that removes the need to construct the JSON
structure. Instead of code-based, it uses click&add to create the code blocks.
The web-application was created through the library React and with the use of
Typescript as the main programming language.

The result is a web-application that removes the need to construct the JSON
structure and instead produces this JSON structure for the user.

The project concludes that the result web-application did not fully achieve sim-
plification through click&add. However, it creates a good basis for further de-
velopment of policy simplification. In its current form, the app can be viewed
as an alternative method for creating an Azure policy definition.

iv

Sammanfattning

Molnteknologierna star i spetsen for dagens innovations- och automatiseringsin-
satser. Med anvandning av Azure Policy ar det mojligt att styra Azure-resurser
och tjanster genom anpassade Azure-policydefinitioner.

Detta projekt syftar till att forenkla skapandeprocessen for Azure-policydefinitionen
genom att skapa en webbapplikation som tar bort behovet av att konstruera
JSON struktur. Istéllet for att strukturera JSON via kod anvénder den click&
add for att skapa kodblocken.

Webapplikationen skapades genom biblioteket React med programmeringsspraket
TypeScript.

Resultatet dr en webbapplikation som tar bort behovet av att konstruera JSON
strukturen och istéllet producerar den har JSON-strukturen for anvindaren.
Projektet drar slutsatsen att resultatapplikationen inte helt nadde forenkling
genom anvéandning av klicka&léagg till. Det skapar dock en bra grund for vi-
dareutveckling av forenkling for Azure-principdefinition. I sin nuvarande form
kan appen ses som en alternativ metod for att skapa en Azure-principdefinition.

vi

vii

Contents

1 Introduction 1
1.1 Customer 1
1.2 Purpose and Goal 2
1.3 Limitations 2

2 Background 3
2.1 Similar existing techniques L. 3

2.1.1 Game Maker Drag&Drop 3
2.1.2 Scratch 3
2.2 Azure ... 3
2.3 Azure GOvernanceo e e 4
231 Tenanto 4
2.3.2 Subscription 4
2.3.3 Management Groupo 4
2.3.4 Resources e 4
2.3.5 Resource Groupo 4
2.3.6 Azure Policy 4
2.3.7 Azure Policy Definition Structure 6
2.3.8 Imitiativeso o 7
2.4 Software 8
2.4.1 TypeScript 8
2.4.2 Cascading Style Sheets(CSS) 8
2.4.3 HyperText Markup Language(HTML) 8
2.5 Platforms & Libraries 8
2.5.1 React 8
2.5.2 React-dnd-Beautiful 8
2.5.3 React-hook-form 10
2.6 Framework 11
2.6.1 TreeView 11
2.6.2 Tabs 11
2.6.3 Other Components 11
3 Methods 13
3.1 Pilot Study 13
3.1.1 Testing the project 14
3.2 Development of the System 15
3.2.1 Azure Definition Structure for the application 15
3.2.2 Creating the application and components 15
3.2.3 Parameter functionality 16
3.2.4 PolicyRule functionality 18
3.2.5 Drag&Drop or Click&Add 20
3.2.6 Menu functionality 0oL 21
3.2.7 The resulting JSON data 21
328 Design 22

viii

3.2.9 Feedback changes
4 Results
4.1 Website & Website Sections
4.1.1 Parameters
4.1.2 Menu
4.1.3 Policy Rule
414 Mode & Get JSON
4.2 Test Results o
5 Discussion
5.1 Result compared togoals
5.2 Flaws in the project oL
5.3 Strengths in the project
5.4 Assessment and evaluation of the project
5.4.1 TImplementation L.
5.4.2 Technical Solution
5.5 Social requirements for technical product development
5.5.1 Economical 0 oL
5.5.2 Environmental
5.5.3 Securityo
6 Conclusion
6.1 TImprovements Lo
6.2 Validation from Ombori

References

7 Appendices
7.1 Appendix A
7.2 Appendix B

ix

23
23
24
26
27
29
31

33
33
34
34
34
34
35
35
35
35
36

37
37
38

39

1 Introduction

Cloud technologies are spearheading today’s innovation and automation efforts.
With great speed and power comes great responsibility. Cloud governance is
about making sure the resources and services are used in adherence to compli-
ance and security requirements. There are tools to measure, review, or enforce
these things. One of these tools exists in the cloud platform Azure [1], where
you can use the service Azure Policy[2] to enforce organizational standards and
compliance for the resources that exist. Azure Policy includes built-in policies
that you can use or custom policies that allow you to create your own poli-
cies. The Azure policies are written in JSON and deployed upon cloud platform
Azure.

Creating your own custom policies requires knowledge on how the structure
is built and how to use special operators and inbuilt parameters[3]. The combi-
nation of using built-in and proprietary policies can complicate the process and
create ”anarchy” around simple and given requirements or controls. In other
words, it is easy to complicate the process so that the effect is not maximized
around control or safety.

In this project, I create an ” Azure Policy Builder” that democratizes the lan-
guage and vocabulary of Azure assets to make it visible, simpler, and more
unified to a larger audience. The central idea is creating a web-application in
which it is possible to easily connect elements to visually create a policy. To
receive the resulting Azure Policy, a user only needs to type in his custom values
instead of building the entire JSON structure by himself. This is done through
click & add. In other words, the user can connect elements according to his
needs and then get this out in JSON, which then can be used to set up an own
policy in Azure correctly and efficiently.

1.1 Customer

The project idea for an ” Azure Builder” was given by the company Ombori[4],
more specific the security/compliance department. Ombori is a company that
develops applications to connect physical stores with e-commerce and digital
channels.

1.2 Purpose and Goal

The purpose of this project is to simplify the creation of Azure Policies and to
democratize the language and the vocabulary of Azure assets, so they become
discoverable for a greater audience.

The goal is to create a web-application that, through using a user-friendly
method like click & add or drag & drop, will use elements to visually set-up
the structure for the Azure Policy. The result of the creation will be displayed
as policy JSON structure and is supposed to be copied and deployed upon Azure
Platform.

1.3 Limitations

The main limitation of this project is that it is possible to create only Azure
policy definitions. There is no planned support for templates, the creation of
groups, or other techniques offered by Microsoft.

2 Background

This section covers existing techniques related to this project, different plat-
forms, libraries and languages used.

2.1 Similar existing techniques

To the best of my knowledge, currently, there is no work or work in progress
on an Azure Policy builder. However, a similar technique exists which utilizes
drag&drop for coding as well as other projects which try to make the creation of
Azure Policy more efficient. One of them is the original Microsoft Azure Policy
which is constantly being developed. Others to mention are Game Maker which
has drag&drop function for coding, and Scratch which is utilizing drag&drop to
simplify programming.

2.1.1 Game Maker Drag&Drop

Game Maker[5] is an engine for creating your own games, which can utilize
the drag&drop function[6] to easily dive into the creation of games and Game
Maker’s language GML. The similarity to this project is the drag&drop function
and how Game Maker uses this functionality to simplify the creation of code.

2.1.2 Scratch

Scratch[7] is a program that lets a consumer create games, animations, and
stories. The programming utilizes a dragé&drop called Snaps![8]. In short, it is
a visual drag and drop programming language with the purpose of introducing
computer science to a younger audience. Scratch is a great reference for this
project. Even though the target audience is youngsters, it demonstrates a great
example of how drag&drop can simplify coding and structure for the language.
The program is also highlighting an essential factor, user-friendliness. It is easy
to use the program thanks to its intuitive user interface, and this is something
significantly important to remember when developing any web-application.

2.2 Azure

Microsoft Azure[1] is a cloud-platform developed by Microsoft. It allows users to
manage resources and services through their platform. It provides Infrastructure
as a Service (IaaS)[9], Platform as a Service (PaaS)[10] and Software as a Service
(SaaS)[11]. Azure is a large cloud service provider and has over 60 data centers
spread across the regions [12]. Thanks to being so spread out, they can reach out
to a larger audience. Azure provides a wide selection of services and platforms
to use, one of which is Azure Governance.

2.3 Azure Governance

Azure Governace[13] contains the services for governance and management of
resources through the use of Azure Policies, Azure Management Groups, Azure
Blueprints, Azure Resource Graph and Azure Cost Management and Billing. To
get started with Azure Governance, it is essential to know the relations between
the different building blocks.

2.3.1 Tenant

Tenant[14] is the Top-tier block which the consumer, company, or private person
starts off with. Tenant is unique for the consumer, and it is possible for a
consumer to have multiple unique tenants.

2.3.2 Subscription

Subscriptions[14] open up the possibility to use the Azure cloud services, i.e.,
TaaS, SaaS and PaaS. It is possible for a consumer to have more than one
subscription.

2.3.3 Management Group

Management Group[14] is connected to a tenant and is used to group subscrip-
tions. The tenant always starts with a root management group that can not be
deleted, only expanded. From the root management group, more management
groups can be connected to it. They are used to create a logical structure for
the consumer.

2.3.4 Resources

Resources[15] are the objects in Azure such as Virtual Machines, databases, etc.
Resources are last in the chain for the hierarchy.

2.3.5 Resource Group

Resource groups[14] are used to group multiple resources. When resources are
grouped, they can be treated as a single object, and all resources within inherit
what is assigned to the group.

2.3.6 Azure Policy

Azure Policy is a service from Azure that is used to enforce organizational
standards and compliance for the resources within Azure. With policies, it is
possible to easier control and manage user’s resources, for example, to deny
the creation of different kinds of virtual machines. Azure provides a lot of pre-
built policies that can be used and assigned through Azure, and they can be
assigned to different scopes within Azure. These scopes include management
group, subscription, resource group, or resources. It is important to know the

hierarchy of these scopes to correctly assign the policy[14][16]. An example is

shown on figure 1.
Management Group

k4 h 4

Subscription Subscription

h 4 k4 h J h J

Resource Group Resource Group Resource Group Resource Group

k4 k4 h 4

e resee esoure

Figure 1: Hierarchy of the scopes available
If you assign a policy to the subscription, all the resource groups and resources
within that subscription will be assigned with this policy. Another example is
if a resource group is assigned a policy, then only the resources below will be
assigned. In other words, everything under the level will be assigned the same
policy.

2.3.7 Azure Policy Definition Structure

The policies have a pre-defined structure that has to be followed to be success-
fully created. The policy is written in JSON through an editor such as Visual
Studio Code. The policy structure is defined by Microsoft documentations[17]
as:

e display name
e description
e mode

e metadata

e parameters

e policy rule
- logical evaluation
- effect

The structure mentioned above is to be followed, with some exceptions. Display
name, description and metadata are created upon the creation of the policy
through the Azure Portal. During the creation of the written JSON policy
definition, the only parameters needed are "mode”, ”parameters” and ”policy
rule”. ”mode”, ”parameter” and ”policy rule” in turn have a structure and
some set options that have to be chosen.

This structure is also defined in the Microsoft documentation[17]:

Mode:

e indexed or all
Parameters:

® name

e type

e metadata
- description
- displayName
- strongType (Optional)
- assignPermissions (Optional)

defaultValue (Optional)

allowedValues (Optional)
Policy rule:

o if
-logical operator & condition

e then
-effect & details

During the project this structure will be analyzed and utilized for the web-
application to create the policy definition. An example of how a complete policy
definition can look like is shown on figure 2, taken from one of many Azure built-
in policy.

"strongType”:

1
Is

"policyRule”: {

"field":
"equals™:

]

1
T
I
L

5] -

then™: {
"effect": "Deny”

Figure 2: Example of Policy Definition

2.3.8 Initiatives

Initiatives[14] are used to group up policies. That simplifies management thanks
to having a single item instead of multiple. Instead of handling multiple policies
and keeping up with updating every single one, it is possible to group them up
into a single item. By doing so, the workload is reduced as well as the chance
of forgetting a policy.

2.4 Software

In this project, CSS, HTML, and the programming language TypeScript are
used to create the web-application.

2.4.1 TypeScript

TypeScript[18][19] is an open-source language that is built on JavaScript and
introduces types. Types are used to describe the shape of an Object, provide
documentation and allow validation to check if the written code is working prop-
erly. TypeScript is not a new language and transpiles the code into JavaScript.
However, it chooses a more performance-wise JavaScript code through the typed
TypeScript.

2.4.2 Cascading Style Sheets(CSS)

CSS[20] is used to manage style, color, and all other elements representing the
visual appearance in web-applications. It is used to make the web-application
more visually pleasing for the consumer.

2.4.3 HyperText Markup Language(HTML)

HTMLI21] defines the structure of the content for a web-application. HTML is
a markup language that creates elements. The elements are used to wrap or
enclose parts of the content to structure it and make it appear or act in certain
manners[21]. CSS is used upon the HTML to style and make it more visually
pleasing.

2.5 Platforms & Libraries

The platform that is utilized during this project is React. The libraries are
dragé&drop library called react-dnd-beautiful[22] and react-hook-form for han-
dling input data.

2.5.1 React

React is a JavaScript library maintained by Facebook [23]. Tt is used to create
interactive web pages. It is component-based which makes it easy to manage
and divide parts of the application. It also has the functionality to easily host
one’s website through localhost, which can be used to see the application visually
during development. React uses the language JavaScriptXML or TypeScript.
In this project TypeScript is used along with React.

2.5.2 React-dnd-Beautiful

The dragé&drop that is used in the project is react-dnd-beautiful[22]. React-
dnd-beautiful is a library that needs to be downloaded through npmjs[24]. To
use this library, you encase the whole react application in a DragDropContext.

In the DragDropContext, you encase the components in Droppabble, and in
Droppable you encase the component with Draggable in order for the component
to be draggable. Visually it can be seen in figure 3.

4 N
DragDropContext
4 N
Droppable
Draggable
Draggable
. »
u M

Figure 3: DragDrop Contexts
To summarize the contexts, DragDropContext[25] is encasing the whole appli-
cation, and from there, you can encase with Droppable[26] & Draggable[27] for
the components you wish to have this property. These contexts have properties
that need to be fulfilled in order to work properly.

DragDropContext[25] has one required property to work which is onDra-
gEnd. OnDragEnd requires a function where the user customizes how to handle
the dragged components. OnDragEnd provides the source and destination of
the dragged option. The information from source and destination is enough to
pinpoint which component is marked and where the destination of this compo-
nent ends up.

Droppable[26] has one required property called droppableld, which is the id
of the droppable component. It also requires that the children of the Droppable
are a function that returns a ReactElement. Droppable provides an object ” pro-
vided” which is used to identify properties for the Droppable. The first one is
”innerRef” which is used to bind the ReactElement to appear on the highest
possible DOM node in React. The second one is ”placeholder” which is used
to create room in the Droppable component if the dragged object is not from
the same Droppable component. That is, if a new item occurs in the Droppable
component, it increases the size of Droppable to handle new items. Lastly,
droppableProps exists within ”provided”. It is used for styling and lookups. It
is essential to have droppableProps applied to the same component that ”in-
nerRef” is applied to. Otherwise, when the component is moved it will not
recognize which component moved.

Draggable[27] has two required properties, draggableID and index. DraggableID
contains the id , i.e., identifier, of the component that should be able to be
dragged. Index is the order of the draggable components, showing where in the
Droppable list it exists. No index duplicates can exist since it is the identifier
for the position of the unique draggable component.

2.5.3 React-hook-form

React-hook-form[28] is used to collect input data from a web-application. Tt
is a library containing API’s for handling forms. In this project, ”useForm”
and "useFieldArray” are used. ”UseForm” is a custom hook that validates the
form using minimal renders for existing inputs. ”UseFieldArray” is used to
dynamically generate new objects and has functions for adding and deleting.
?UseForm” is used to handle all data while ”useFieldArray” can be used to
generate new objects. React-hook-form can use uncontrolled inputs instead of
using controlled inputs. Uncontrolled inputs mean that it is possible to reference
input and there is no need to rely on states within react to control what values
are being written into the input. In this way, it is possible to simply reference the
inputs and let the library keep track of each input. It is also easy to integrate the
use of react-hook-form into other User-Interfaces components, which otherwise
requires different solutions.

10

2.6 Framework

The development of the application will use a framework called Material-User
Interface(MUI)[29]. It is possible to use MUI’s components to make web de-
velopment faster and more stylish. In this framework, this project will utilize
components such as Buttons, Radio, Icons, styles and the most important, Tree-
View.

2.6.1 TreeView

MUT’s TreeView[30] is the structure the section policyRule will assume, it is a
tree with the possibilities to be expanded with Treeltem. TreeView initialize the
tree and Treeltem are items that the tree contains. The reason that TreeView is
chosen from the countless other tree components that exist is that it is possible
for a Treeltem to contain HTML and to customize the tree content freely.

2.6.2 Tabs

Tabs is a component from MUI. It allows navigation between groups that contain
content. It is a component that can be used to create an easily navigated menu.

2.6.3 Other Components

Buttons, Radio, Icons and styles give the baseline for a stylish and functional
component that otherwise would be just a simple component. It is fully cus-
tomizable and looks great without diving deep into the component structure. All
the components are well documented and easy to integrate in a web-application.
MUTI has a lot of different components, and just by browsing through their com-
ponents, it is possible to visualize great design ideas for a web-application.

11

12

3 Methods

3.1 Pilot Study

This project is about democratizing and simplifying the creation of Azure poli-
cies. To determine how to do this and what to implement, Azure Policies had
to be analyzed. Microsoft’s documentation was the primary source of informa-
tion about the structure, assigning, resources, etc. The first questions to be
answered were ”Why does policy creation need to be simplified?” and ”"How is
it possible?” During my pilot study, it was known that the definition structure
for creating a policy has a lot of repeatable JSON, with only different values.
Also, the definition structure must be followed according to Microsoft’s docu-
mentation. In general, to get started with policies, you have to read through a
lot of documentation which is time-consuming and hard. Having this in mind,
it is obvious that the policy creation process can be simplified by removing te-
dious repetitions for the structure and by reducing the amount of time needed
to understand the JSON structure. To simplify the creation itself, drag&drop
can be utilized instead of writing using JSON. It is easier to drag components
to compose code blocks instead of writing them from scratch.

With this idea of creating a drag&drop Azure policy builder, the next ques-
tion came to mind was ” Where this application has to be created?”. With such
a Builder, there is only a need to drag&drop components into a list which is the
result. No data needs to be stored since the application should create the policy
depending on what the user chooses at the current moment. Thus, a single
web-application will be enough. Here React came to mind since it is easy to use
and it excels at creating one-page web-applications. React is component-based,
and is great for creating applications.

A drag&drop was investigated. It was found out that on node package manager|[24],
there exist different types of drag&drop components that can be used. In the
end, react-dnd-beautiful[22] was chosen since it has a good custom option and
natural movements.

13

3.1.1 Testing the project

The testing for this project will be conducted in the UI. The testing will involve
steps presented in Table 1.

Test How to test it Expected result
Natural movement and
Navigating through | Try all the options in | transition between the

the possible choices

the application

choices of the applica-
tion

That a click on the
button displays correct

JSON

Trying the component
through drag&drop
and analyzing that the
result is correct

produces right JSON
from the choices of the
consumer

User-friendliness

Self-analyze the result
and sending the appli-
cation to Ombori for
testing of the Ul

A good easy to use in-
terface

Creation of the defini-
tion through click&add

Testing the creation
myself and sending to
Ombori, where Azure
professionals can test it

Natural movement and
correct definition from
options

Simplicity of the appli-
cation

Compare it to writing
pure JSON and analyz-
ing the result of testing
from Ombori

Easy to understand
and not tedious to cre-
ate policy

Table 1: Testing for the project

14

3.2 Development of the System

The development of the application will delve into how the structure for the
components is composed and the steps for the creation of each part, starting with
explaining how the policy definition structure will be used for the application;
how the application is created and the creation of the components within the
application; how the lists are composed and how the click&add is implemented
and used on the components; lastly, how the choices are composed into the
correct JSON for the policy.

3.2.1 Azure Definition Structure for the application

The first step in the project is to structure the components for a code-block that
represents the JSON from a policy definition. It is important to analyze the
current way of creating the definition, and to restructure it to a simpler form,
keeping the original JSON but explaining it in an easier way. There are three
important "sections” that define a definition. Those are "mode”,” parameter”
and ”policyRule”. "mode” can have only two outcomes, indexed or all. First,
”"mode” is required and can be included directly upon the canvas with the pos-
sible option ”indexed” and ”all”. Second, ”parameter” is an optional section
and if used, has more properties and can be simplified by visually displaying
the properties with inputs for the user. These are listed in 2.3.7. The optional
parts exist, but if left empty, is not included in the result. The last, PolicyRule
defined in 2.3.7, starts with the required ”if”,”then” and ”effect”. The logical
operators and conditions should be added upon click on respective button from
the menu upon the selected ”if” statement, and the same with the choices for
the "then” properties. All the values have an input field, with a auto-complete
option for the built-in parameters for each property. With the structure laid
out, the creation of the application is starting.

3.2.2 Creating the application and components

To create the react application, node package manager is used. With the cre-
ation of the react application, the foundation is the first to be laid. The founda-
tion is the sections in which the different parts of the applications are supposed
to be. Following the initial design shown in figure 4, the sections are a menu
that holds all the addable options that exist for "policyRule”. A container for
”parameter” that contains the form for ”parameter” properties. A container for
”policyRule” that contains the tree-structure for the possibility to dynamically
nest the rule definition. Lastly, the "mode” that is a selection for the user.

15

Mode selection input

4 ~
Contains:
Menu: FParameter farm.
Addable options Button to add new parameter.
for PolicyRule
through Drag&drop h iy
or click&add o~ ~
I Contains:
PolicyRule Tree
button to get JSOM

e vy

Figure 4: First design layout for web-application. Different sections of applica-
tion are shown.

To start with the website, these sections shown in figure 4 was defined us-
ing HTML. After creating the sections above, their functionality needed to be
defined.

3.2.3 Parameter functionality

The container for ”parameter” functionality included showing the possible prop-
erties for the user. For these ”parameter” properties inputs was required for the
user to define their desired values. The parameter’s properties as described
in 2.3.7 was defined upon the parameter section. These parameter properties
are: "name”, "type”, "description”, ”displayName”, ”strongType”, ”assign-
Permissions”, ”defaultValue” and ”allowedValues”. To handle the input data,
react-hook-form was used, in this case a specific API from react-hook-form was
used called ”useFieldArray”. The reason why ”useFieldArray” was used was
that there can exist multiple parameters within a policy definition, and ”use-
FieldArray” makes it possible to simply add a new item through their in-built
functions. When adding a new so-called ”field Array” it duplicates the previous
item, which is the parameter form. With this, the functionality to add multiple
parameters exists. The inputs must also give the correct JSON data structure.
To achieve this using react-hook-form, it is necessary to name the inputs by
their respective names shown in figure 5.

16

Figure 5: Naming of Inputs
By naming respective inputs by the correct name, the data forms the correct
JSON structure. The indexing in ”parameters” is what "useFieldArray” utilizes
to create duplicates of the parameter form. The names that are nesting through
dots upon other names, create the correct JSON structure.

17

3.2.4 PolicyRule functionality

The container for ”policyRule” has to involve handling objects that could be
nested and dynamically changed according to the user’s self-defined rule. To
start of a object was defined, the object which would represent one block for
the "policyRule” is shown in figure 6. The object is a classic node, with some
added properties to define the options available.

e id: The unique name of the In-

put.
e previd: The previous Input id. secondOption
amountChildren?:
e secondOption: The second op- icon: 1SX.El
tion for the property. option

children:

e amountChildren: The amount
of children this Input posses.

e icon: The icon displayed next to Figure 6: Input Object
this Input.

e option: The main property op-
tion.

e children: Nesting of the same
type, to expand the tree.

18

TreeView was used to create the tree from the ”Inputs” data. To render this
tree structure, the function renderTree() (figure 7) was created. renderTree() as
the name implies is the function that returns the correct tree-structure visually.
The function is recursive and in this manner can create the tree. The Treeltem’s
identifiers are key and nodeld, whereas icon and label are what is visually showed
for the user. The label uses another function to determine what to render upon
the node. The function findComp() filters by option and secondOption and
returns the correct HTML element to display upon the canvas. The identifier
nodeld determines if the node is the one that is selected by the user. There is
also an Icon and onlconClick. The icon renders the icon given, and onlconClick
is an ”onClick” handler that triggers the function deletelnput(). deleteInput()
is a function that removes the node with that id if clicked upon the icon.

conten
group:
}
key={treedata.id
icon={treedata.icon
onIconClick={{() deleteInput{treedata.id)
nodeld={treedata.id

label={findComp(
treedata.option,
treedata.id,
treedata.previd,
treedata.secondOption

isArray(treedata.children)
? treedata.children.map((treedata) renderTree(treedata))

Figure 7: RenderTree, recursive render function

19

TreeView is the the initialiser used to create the tree. Inside TreeView, the
function that was explained renderTree() is used. The parameter ”policy”, used
in renderTree(), is the start data of type "Inputs” containing the required policy
rule properties mentioned in 2.3.7. A function helper addInput() also exists, it
adds a new ”Inputs” upon the selected node ”children” property. To visually
change the render for the user when adding or deleting ”Inputs”, the data of
the objects are contained within states. ”Policy” is the local state, so whenever
a change occurs from deleting or adding, it will run the renderTree(policy)
function, which triggers a change upon the canvas. This addInput() function is
utilized in the menu-section.

eView
onNodeSelect={handleSelect
expanded={nodeIds

classMame={tre

Figure 8: The structure of TreeView, with selection of the items enabled.

3.2.5 Drag&Drop or Click&Add

The dragdcdrop (2.5.2) was tested at the start of this project to determine if it
fits the web-application. However, when ”parameters” and ”policyRule” were
completed and it was time to implement drag&drop, it felt clunky with the
use-case of ”policyRule”. It did not have the freedom to connect whatever a
user wants since it is important to follow a certain structure. Usually, when one
wants to add something, it would be faster to just click the option instead of
dragging it. Hence, the final decision was to use click&add instead. This would
give more precision during add-operation and is faster when adding multiple
options. The only upside drag&drop would have was to be able to re-order the
options, however, this is not necessary. The implementation was to instead of
using drag&drop, have buttons at the menu. The user selects the node on the
canvas and adds the desired condition/property through a button click.

20

3.2.6 Menu functionality

With the completion of sections ”parameter” and ”policyRule”, it was time to
create the menu which would expand the tree for ”policyRule”-section. The
menu that has the reserved spot at the left of the web-application was created
by using ”Tabs” component from MUI. It is a simple menu component that
creates clickable ”tabs”.

ltem One

ITEM ONE

ITEM TWO

ITEM THREE

Figure 9: An example of the look of Tabs Vertical

The options we need for the menu ”Tabs” are:
e operators

e value/field Conditions

e append

e auditIfNotExists

e audit/deny

e modify

The content within the ”"Tabs” was the corresponding options that could be
used to create the JSON structure for ”policyRule”. It consisted of MUI buttons
with ”onClick” handlers. When clicked, it sends the corresponding option to
the function addInput(), where it checks what the user selected and creates new
”Inputs” in the ”children” property for this ”Inputs”.

3.2.7 The resulting JSON data

With the completion of the sections and the setup for react-hook-form, it was
time to display the result JSON data. However, the data that was gathered
throughout the web-application had the incorrect JSON structure that Azure
requires. Before printing the data to the user, it was necessary to handle it and

21

fix the incorrect structure. The incorrect data was ” parameters” and some of the
inputs. React-hook-form gave out parameters as an array, whereas in the Azure
structure it is simply an object containing the different created parameters.
Another issue in parameters is that the id name is the written name that a user
defines. To fix both of these issues, the array had to be iterated and added
upon a newly created Object. The new Object replaced the parameter data. A
new Object had to be created because Objects are immutable, meaning it can
not dynamically change the id name. The second issue was that some inputs
required the output values to be arrays, inputs output string values, and this
had to be changed. In the inputs, it was necessary to check if this is an array
value-option and if it is, creates an array for the values inputted by the user
instead. Finally, with the correct structure, all that was needed was to show
this JSON data to the user. Instead of displaying the JSON data upon the web
application, a pop-up was used. With the use of a pop-up, it is easier to copy the
data directly and it does not take up an unnecessary place in the application.
The pop-up used was from MUT and is called "modal”.

3.2.8 Design

Once the web-application was completed, styling needs to be applied. With
the use of MUI some standard styling was already set on components such as
buttons and inputs. But tweaks were needed since the sizes were too big and
the containers for the sections were not visually pleasing to look at. The whole
application design was revised and styles were added to all components and
containers. The progression of the design for the web-application can be seen
in Appendix B.

3.2.9 Feedback changes

Feedback was received from the supervisor from Ombori, where it became clear
that the design had flaws. The menu was revised, and instead of using ” Tabs” for
the menu, it was switched to TreeView. Color-coding the buttons were added to
make the web-application more user-friendly. Now, blue buttons depict ”add”
and red - "deleted” whereas all buttons had one color in the previous option.
Icons were added on the buttons to indicate their purpose, where a ”+” means
adding and trashcan - deleting. In the feedback, it was also mentioned a lack of
information given to the user. To solve this, a hover action was implemented.
When hovering over an i-icon, it gives information about the corresponding
property. The design was slightly altered, so instead of having horizontal con-
tainers for ”parameters” and ”policyRule”, it was changed to vertical containers
that were more fitting since ”policyRule” contains a tree-structure.

22

4 Results

4.1 Website & Website Sections

The result of this project is a website that produces the JSON structure from
a user’s selection and inputs on the canvas through click & add. The website
contains 4 sections: the left-sided menu, the policyRule canvas, the parameter
canvas, and a little section which includes the 'mode’ and 'GET JSON’ button.

PolicyRule Options Menu Modeln -]] + PARMMETER
> jons

O policyRule
oif
O then

effect

Figure 10: Website appearance

23

4.1.1 Parameters

Parameters are an optional part, hence, it is empty at the beginning. A button
exists to ’Add Parameter’, that adds one parameter form. The form requires
values from the user.

+ PARAMETER

Figure 11: Empty Parameter

24

When a new parameter is added, a form is created in which the user can input
the information for the parameter. The required fields are marked with a red
star, the other fields are optional as shown below in figure 12. A button exists
at the end of the parameter, ' REMOVE PARAMETER’, which removes the
parameter. It is possible to add more parameters, the newly added parameter
will add the same form below the latest added parameter.

+ PARAMETER

Oparameter: 1
®@name of parameter:*
Otype [String v [*
@Ometadata
@description:*

@displayName:*

@strongType:

@assignPermissions:

@OdefaultValue:

Q@allowedValues:

REMOVE PARAMETER

Figure 12: One Parameter

An icon in the front of each parameter property name, when hovered with
the mouse, displays a pop-up information about what is expected and what this
property means, as shown below in figure 13.

| Name of Parameter: A choosen name for your

parameter. Parameter is used within policy rule.
Parameters name can not be duplicated, they must
be unigue within this creation.

®metadata
@description:*

Q@displayName:*

—

Figure 13: Hover Information

25

4.1.2 Menu

The menu consist of a tree, with the options that PolicyRule can contain. The
tree is of type TreeView from MUI. The items within the tree are buttons that
add to the selected node from the PolicyRule canvas. The menu contains, as
seen in figure 14, all the options required for a policy rule and optional properties

for the effect.

PolicyRule Options Menu
~ Insert Logical Operators

@ + ALLOF
@ + ANYOF

@ + NOT

> Insert value/ffield Conditions
~ Insert effect properties
~ append properties

+ ARRAY/DETAILS

+ ACTION/VALUE

+ FIELD/WALUE

> auditifNotExists properties
> audit/deny properties
> modify properties
~ Special Functions
> Count
> How to use

Figure 14: Menu

26

PolicyRule Options Menu

" o = 1 4
5

The anyOf operator requires only one condition
Inside to be true to become true. It is a 'Or' operator.
Can be nested with itself and/or "allOf

@® + NOT

» Insert value/field Conditions

Figure 15: Hover Event
Information regarding the options that can be added, can be shown through the
icon on the left of the buttons. The information contains some basic information
about what this option does. It is a pop-up triggered by hovering over the icon.

4.1.3 Policy Rule

The policyRule contains a canvas with the tree-structure. In the beginning, the
required parts that policyRule consists of, which are ’if’,’then’ and ’then.effect’,
is shown. When an option is selected, it is lighted up. Once the option is
selected, it is possible to use the menu buttons to add operators, conditions and
effect properties. PolicyRule can be nested and to see what contains what, a
dotted line indicates which option is under it.

O policyRule
)i

. O then

: : effect

append

Figure 16: PolicyRule Canvas

27

For example, if selecting ’if” and adding an ’allOf’ it will create a field with
"allOf’. After selecting ’allOf’, it is possible to add conditions such as ’equals’.
This will create inputs with either 'field’ or ’value’ and the condition ’equals’.
It is possible to nest operators, so if the user selects 'allOf’ again and adds
operator ’anyOf’, another field named ’anyOf’ is created. By selecting 'anyOf’
and adding two conditions, 'notEquals’ and 'contains’, it will create the inputs.
This is shown in figure 17. The inputs seen next to the added properties on the
canvas expect the user to fill them in.

O policyRule
O
[allof
field
O
equals
O anyOf
field
O
notEquals
field
O
contains
O then
: . effect
append

Figure 17: Adding Options
In figure 17, the added options have an icon of a trashcan. By clicking the

icon, added options are deleted. By deleting an option, it will also delete all the
added options nested within it.

28

4.1.4 Mode & Get JSON

Lastly, one more mini-section exists, which includes a simple select and a button
"GET JSON’. The selection gives the user two options, either "All’ or 'Indexed’.
This sets what 'mode’ is. The last button is ’'GET JSON’; positioned next to
‘mode’. It triggers a pop-up with the structured Azure Policy JSON for the
options chosen from policyRule, mode and parameter.

Maode | Al v GET JSON

O p(Indexed

Figure 18: "Mode’ & "GET JSON’ buttons

29

For example, if we take the structure shown on the figure 17, add one pa-
rameter and some fake-values, and push the "GET JSON’ button, we receive
JSON structure shown on the figure 19.

X

"mode": "AIL",
"policyRule":
nifEm, g
"alloE":

"field": "someValue",
"eguals": "tcrue"

T
"any0OE":

"field": "AnotherValue",
"notEguals": "false"

"field": "ThirdValue",
"contains": "someStorage"

i
"then:
"effect": "[parameters('seffect')]"

T
"parameters":
"effect":
"type™: "String"”,
"metadata":
"description": "This effect will do something”,
"displayName": "Effect”

Figure 19: Resulting JSON data

30

4.2 Test Results
Testing of the application was done by 5 selected people.

While they went

through the website, I was watching them silently to see if they could grasp how
to use the website. From this information, it was concluded that the application
could become more user-friendly., e.g., the website required more information
on how to get started. The test result was adequate to the expected result.
The result can be seen in Table 2.

Test

How to test it

Expected result

Result

Navigating through

the possible choices.

Try all the options
in the application.

Natural movement
and transition
between the choices
of the application.

Works as expected.

That a click on
the button displays
correct JSON

Trying the
component through
click&add and
analyzing that

the result is correct.

produces right
JSON from the
choices of

the consumer.

Works as expected.

User-friendliness

Self-analyze

the result and
sending the
application to
Ombori for
testing of the UL

A easy to
use interface.

Not fully fulfilled,
application can
become more
user-friendly.

Creation of
the definition
through click&add

Testing the creation
myself and sending
to Ombori, where
Azure professionals
can test it.

Natural movement
and correct
definition from
options.

The options
visually shows
correct upon
the canvas.

Simplicity of
the application

Compare it to
writing pure JSON
and analyzing the
result of testing
from Ombori

Easy to understand
and not tedious
to create policy.

Application not

as simple as expected.
Compared to writing
JSON the result
application is

not simpler.

Table 2: Test Result

31

32

5 Discussion

This project aimed to create an application that would simplify the creation of
Azure Policy definitions and can assign the result directly upon Azure Portal.
The focus idea of how to achieve this, grew from analyzing the current way of
creating Azure Policy definition. The project resulted in removing the need to
construct JSON structure when defining the policy definition. Expanding the
policy definition is done by click&add and every property that expects a value
from the user has an input bar.

5.1 Result compared to goals

The goals for this project were:

1. Create an application that produces the JSON policy definitions.

2. Using a user-friendly method such as drag&drop or click&add, create the
policy definition through the web-application.

3. Simplifying the creation of the policy definition process.

1. The result became a web-application that does produce correct JSON policy
from the user’s options. However, it does not contain everything Azure can
utilize, for example, special functions and one optional effect property ”ifNot-
DeployExists”. The reason for this is that the focus was on making the website
more user-friendly since it requires inputs from the user. The usability and how
effective it can be depends a lot on the design and information given to the user.
By focusing on user-friendliness, the web-application became more understand-
ing and navigation became more logical.

2. Drag&drop was revised and replaced by click&add. During development
with drag&drop it became an annoyance to drag and nest items, if misplaced
it would require to re-drag it and could potentially make the user add or nest
it upon something that was not intended. Clicking on the selected options and
adding through buttons, gives more precise adding conditions and is faster if the
need arises to add multiple options upon the same selected option. Comparing
drag&drop with click&add, there was only one reason why drag&drop would be
chosen, which is reordering within the canvas. However, this is not something
that is relevant to this project and gives no benefit. Having all this in mind,
click&add was chosen for the final design.

3. The web-application did not achieve simplifying the current creation pro-
cess of Azure policy definitions. However, it did give an alternative way of
creating these. The reason why the application did not achieve this goal is
that it lacks a trait that would give the user an edge for using the result web-
application. The resulting web-application gives to beginners a slight advantage
since all the information can be found within the same page where the policy is
created. However, it comes with downsides, that is, not supporting other helpful
extensions for receiving their resources. It does not have a better auto-complete

33

for options and code-based gives more freedom to dynamically change mistakes
with wrong chosen conditions, property or types. In most cases, users creat-
ing the policy definition have a background in programming, which means that
they are more comfortable with code-based creation. Simplifying the creation
of policy definition is difficult due to that the code-based creation itself is pretty
simple. The difficult part rests more on the intake of information regarding
what resources to use and how the policy affects these resources within Azure,
and how to assign and manage these policies.

5.2 Flaws in the project

One big weakness during this project is the lack of experience in creating Azure
policies definition and managing resources within Azure. Because of the lack of
experience, a lot of time was spent on understanding the policy definition struc-
ture as well as understanding how it affects resources in the Azure environment.
It seems that with wider prior knowledge on handling resources within Azure,
the mindset on how to simplify the creation of Azure policies would have been
different from the current result.

A lot of time was spent on the drag&drop and attempts to simplify the cre-
ation process with it. I got stuck for quite some time, trying to find a way
to combine them to make it plausible. Instead of continually trying to use
drag&drop for this particular use-case, I should have dropped it earlier and
implemented the basics to realize that click&add would be a better fit. This
would have given more time to implement more functionality and produce a
higher-quality web-application.

5.3 Strengths in the project
Some pros of this project result have been:

e The resulting web-application is a good basis for further development.

e The tree structure for ”policyRule” is visually pleasing and easy to follow,
it accurately shows the nesting in a simpler way than the current code-
based creation.

e The menu is easy to use and navigate through. Keeping all the required
properties under each section with the corresponding information makes
the creation process more streamlined.

5.4 Assessment and evaluation of the project
5.4.1 Implementation

The implementation followed the time plan that was created at the beginning
of the project (Appendix A). However, changes appeared frequently during
the development of the web-application. This refers to the design and use

34

of drag&drop. The design during development was frequently changed and
tweaked. Time for designing the web-application was not accounted for because
of the lack of experience in developing web-applications.

5.4.2 Technical Solution

The technical solution for this project required a thorough understanding of
Azure Policy. The information that revolved around it was enormous, and un-
derstanding of just creation of Azure policy definition was not enough. It was
also important to know the whole process - from creation to assigning, and how
this affected the environment. Without this information, it was impossible to
find a reasonable idea for simplifying.

Typescript was used to create the whole web-application. It was important
to quickly understand how new components from different frameworks can be
used to develop the web-application. The same applies to the different functions
that can be utilized in libraries to adapt the functionality for the desired out-
come. Understanding of those components and functions implies an intensive
reading of countless documentation and trying them out to determine if they
can be used for the development.

5.5 Social requirements for technical product development
5.5.1 Economical

Azure Policy is free to use for the resources owned in Azure. The cost is laid
upon the resources that are being used. Azure Policy is used to manage the
resources in Azure environment, hence, it costs nothing to utilize it.

The policies can govern the spending of the resources and shutdown these if
they drain too much money. They can also be used to deny future creation of
expensive resources that employers should not deploy. This project has no cost,
the only cost can be the hosting. However, since the web-application does not
have many users, the hosting is free.

5.5.2 Environmental

Azure policies are hosted on the Microsoft data center. The environmental
effects include carbon, hardware such as servers, cooling these servers, waste
management and other aspects. Microsoft has 4 main areas in which they
continuously improve their environmental impact on the world. These include
carbon, ecosystems, water and waste. It is important as a user, when using
Microsoft Azure, to know that when using their product how this affects the
environment. Microsoft is carbon neutral since 2012 and aims to become carbon
negative by 2030[31].

The web-applications environmental impact is the server which the application

35

is hosted upon. To keep the application up at all times, requires a server which
is handled by either yourself or a service provider. This includes maintenance
of hardware and in turn waste management.

5.5.3 Security

Azure Policy involves enforcing organizational standards and assessing compli-
ance at-scale. The focus is laid upon security within the environment. No
personal data are available in the open access, and the policies that are ap-
plied to the environment are encrypted. There are also security policies that
let the administrator define policies that follow the company’s security needs.
By defining security policies, it is possible to define the sensitivity of the data
across all subscriptions. During this project, security was not the main focus of
the application since it serves as a creation-type application. No data is saved
anywhere. However, if future development occurs that instills a log-in, security
would be an important topic and would need encryption and a solid database
that needs to follow GDPR.

36

6 Conclusion

The goals of the project were achieved, namely, a web-application was created
that produces JSON policy definition depending on users choices. Simplification
was not fully achieved. However, it is worth mentioning that compared to how
easy the current process is, it is hard to simplify it further without making it
more complex. The resulting application did not fully achieve a simplification
goal but serves as a basis for further development and produced an alternative
creation method that removed the need to structure the JSON policy definition.

6.1 Improvements

The result application involves a good basis to enhance user experience. Im-
provements on the web-application are to strengthen the user experience for the
policy creation process and to involve all the possible options/functions a policy
definition rule can handle. Future work can involve expanding the functionality
by also being able to create policy initiatives and involve extensions that can
fetch resources within the Azure environment.

37

6.2 Validation from Ombori

The supervisor from Ombori, Zsolt Hal6, was kind to give his thoughts regard-
ing the result for this project:

”We at Ombori work a lot with clients where we must investigate their internal
security and compliance requirements. Understanding compliance regulations
is only a tiny part of the problem when you are trying to assess an environment.

Each environment comes with its own nuances’ about how to evaluate security
posture. We challenged Kevin with a non-trivial task of democratizing Azure
Policy’s syntax and semantics. At the time of writing, the intricate structure
of the language (Azure Policy) allows little to no insight into the breadth and
width of possibilities that the language can express.

The task was to implement some clever/creative solution that helps a naive
user with a limited understanding of Azure to formulate basic Azure Policy
documents and to get a have a good understanding of what’s possible to ex-
press using the building blocks of the language provides.

Kevin implemented his solution fully based on his creative genius, often chal-
lenging the shortsighted ideas described in the original task.

The outcome of the thesis is a handy tool that allows for the convenient ex-
ploration of the Azure Policy language and the Azure compliance automation

landscape.

We were happy to host Kevin as a thesis student, and we wish him a fruit-
ful and exciting journey throughout his career.

Best, Zsolt Halo - Managing Director of Ombori SecOps AB”

38

References

[1]

2]

Microsoft Azure. What is azure? https://azure.microsoft.com/en-us/
overview/what-is-azure/. Accessed: 2021-02-24.

Microsoft Azure Documentation,
Contributors: David Coulter, Kurt Furbush, Robert Lyon, JH, John Downs,
Camille Marvin, Alma Jenks, and Ron Balter. What is azure pol-
icy? https://docs.microsoft.com/en-us/azure/governance/policy/
overview. Accessed: 2021-02-24.

Microsoft Azure Documentation,

Contributors: David Coulter, and Bill Anderson. Tutorial: Create a
custom policy definition. https://docs.microsoft.com/en-us/azure/
governance/policy/tutorials/create-custom-policy-definition,

May 2020. Accessed: 2021-02-24.
Ombori. Ombori homepage. https://ombori.com/. Accessed: 2021-02-24.

YoYo Games. Gamemaker yoyo games. https://www.yoyogames.com/
gamemaker. Accessed: 2021-02-24.

YoYo Games. Drag and drop overview. https://docs2.yoyogames.com/
source/_build/3_scripting/1_drag_and_drop_overview/index.html.
Accessed: 2021-02-24.

Scratch. Scratch. https://scratch.mit.edu/. Accessed: 2021-02-24.

Snap! Snap! build your own blocks. https://snap.berkeley.edu/about.
Accessed: 2021-02-24.

Sushil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud computing: A study
of infrastructure as a service (iaas). International Journal of engineering
and information Technology, 2(1):60-63, 2010.

Dimpi Rani and Rajiv Kumar Ranjan. A comparative study of saas, paas
and iaas in cloud computing. International Journal of Advanced Research
in Computer Science and Software Engineering, 4(6), 2014.

S Satyanarayana. Cloud computing: Saas. Computer Sciences and
Telecommunications, (4):76-79, 2012.

Microsoft Infrastruktur. Global infrastruktur med azure. https://azure.
microsoft.com/sv-se/global-infrastructure/. Accessed: 2021-02-24.

Microsoft Azure Governance. Azure governance. https://azure.
microsoft.com/sv-se/solutions/governance/. Accessed: 2021-02-24.

Peter De Tender, David Rendon, and Samuel Erskine. Pro azure governance
and security. Berkeley, CA: Apress, 2019.

39

[15]

Contributor: DCtheGeek Microsoft Resource Graph Documentation.
Azure resource graph table and resource type reference. https:
//docs.microsoft.com/en-us/azure/governance/resource-graph/

reference/supported-tables-resources#resources. Accessed: 2021-

02-24.

Microsoft ARM. What is azure resource manager? https:
//docs.microsoft.com/en-us/azure/azure-resource-manager/
management/overview#understand-scope. Accessed: 2021-02-24.

Microsoft Azure Documentation,

Contributors: David Coulter, Elad Perets, PRMergerl5, Chris Eggert,
Alma Jenks, M. Baldwin, PRMerger6, Bharath Nimmala, stratusjerry,
Toméas Bohunék, Bill Anderson, Lyon Till, Tom FitzMacken, Camille Mar-
vin, Richard Burrs, PRMerger13, DanRawlings-MSFT, and huypub. Azure
policy definition structure. https://docs.microsoft.com/en-us/azure/
governance/policy/concepts/definition-structure. Accessed: 2021-
02-24.

Gavin Bierman, Martin Abadi, and Mads Torgersen. Understanding type-
script. In FEuropean Conference on Object-Oriented Programming, pages
257-281. Springer, 2014.

Typescript. https://www.typescriptlang.org/. accessed 10 April, 2021.

Cascading style sheets home page. https://www.w3.org/Style/CSS/. Ac-
cessed: 2021-02-24.

Html. https://developer.mozilla.org/sv-SE/docs/Web/HTML. Ac-
cessed: 2021-02-24.

react-dnd-beautiful. https://github.com/atlassian/
react-beautiful-dnd. Accessed: 2021-02-26.

React homepage. https://reactjs.org/. Accessed: 2021-02-18.
Npmjs homepage. https://www.npmjs.com/. Accessed: 2021-02-18.

Erik Beuschau Contributors: Alex Reardon, Tim Haywood. Dragdrop-
context. https://github.com/atlassian/react-beautiful-dnd/blob/
HEAD/docs/api/drag-drop-context.md. Accessed: 2021-02-26.

Sebastian Aigner Contributors: Alex Reardon. Droppable.
https://github.com/atlassian/react-beautiful-dnd/blob/HEAD/
docs/api/droppable.md. Accessed: 2021-02-26.

Alex Reardon. Draggable. https://github.com/atlassian/
react-beautiful-dnd/blob/HEAD/docs/api/draggable.md. Accessed:
2021-02-26.

40

28] react-hook-form. https://react-hook-form.com/. accessed 10 April,
p
2021.

[29] Material-ui. https://material-ui.com/. accessed 10 April, 2021.

[30] Treeview api. https://material-ui.com/components/tree-view/. ac-
cessed 10 April, 2021.

[31] Environmental sustainability. https://www.microsoft.com/en-us/
corporate-responsibility/sustainability?activetab=pivot_1:
primaryr6. accessed 10 April, 2021.

41

42

7 Appendices
7.1 Appendix A

43

Time Plan

Name

Pilot Study

Setup React(website)

Tests on Drag&Drop

Program the Canvas for Drag&Drop

Structure defined for Policies

Azure "mode" all components

Test for one layer to produce correct

JSON

Azure "parameters" all components

Azure "PolicyRule" all components

Implement Drag&drop or buttons to

add new inputs

Implement Custom values for each

Azure component which can include

custom parameters

Connect layers for each Azure
component

Final tests
Milestones:

Projectplan complete and sent in

Projectplan Seminar

Half-time Report

Half-time Seminar

Preliminar final report

Examination and final seminar

utExpo

Examination Opportunity 2

Untitled

Time Plan

Assign

Date Status

@Jan 27, 2021 - Feb 14, 2021
@Feb 14, 2021 - Feb 19, 2021
@Feb 15, 2021 » Feb 25, 2021
@Feb 21, 2021 > Mar 3, 2021
@Feb 27, 2021 - Mar 13, 2021
@Mar 8, 2021 - Mar 15, 2021

@Mar 12, 2021 -» Mar 16, 2021

@Mar 15, 2021 - Apr 3, 2021
@Mar 15, 2021 - Apr 3, 2021

@Apr 4, 2021 - Apr 11, 2021

@Apr 7, 2021 > Apr 14, 2021

@Apr 8, 2021 - Apr 15, 2021

@Apr 15, 2021 > Apr 22, 2021

@Jan 24, 2021 > Feb 2, 2021
@Feb 1, 2021 > Feb 5, 2021
@Feb 8, 2021 » Mar 10, 2021
@Mar 15, 2021 - Mar 19, 2021
@May 2, 2021 - May 10, 2021
@May 17, 2021 > May 25, 2021
@May 31, 2021 - Jun 6, 2021
@Aug 30, 2021 - Sep 5, 2021

7.2 Appendix B

45

First design:

Second design:

OPERATORS
FIELD AND CONDITIONS.

VALUE AND CONDITIONS.

APPEND

AUDITIFNOTEXISTS

AUDIT/DENY

MODIFY

DEPLOYIFNOTEXISTS.

COUNT FUNCTION

HOW TO USE

Third design:

+ Operators @ DELETE SELECTED NODE Mode[al | RSN + PARAMETER
+ ALLOF
[+ auor | ol LI—
+ ANYOF name of parameter:

O s
> Conditions ; metadata
> Insert effect options o O escription:
> Special Functions [J—
> How to use
oslrongType:

@ .signpermissions:
O geauitvalue:
@iioweavalues:

REMOVE PARAMETE!

Kevin Brandhild

Besoksadress: Kristian [V:s vag 3
Postadress: Box 823,301 18 Halmstad
Telefon: 035-16 71 00

HOGSKO LAN E-mail: registrator@hh.se
| HALMSTAD www.hh.se

