
Bachelor Thesis

HALMSTAD

UNIVERSITY

Computer Science and Engineering, 300 credits

OPC UA Field eXchange Prototyping

Enabling decentralized communication using
Publish/Subscribe

Computer Science and Engineering, 15
credits

Halmstad 2021-06-22

Jesper Palmér, Samuel Andreasson

Abstract

Open Platform Communication Unified Architecture, or OPC UA, is a world-leading communication

protocol specializing in unifying and automating production systems communication. In 2018 the OPC

Foundation, an industrial consortium, started the OPC UA Field eXchange initiative to develop the

current protocol to extend the reach of the communication down to field level devices like sensors

and actuators. This paper explores whether OPC UA FX software can be implemented and integrated

with HMS Networks’ product AnyBus CompactCom M40.

The problem formulation stems from the future need for factory communication. For factories to

compete, they need to adapt and keep up with the technological progression. OPC UA FX is based on

decentralized communication where devices transmit data to each other by distributing the load over

the entire system.

The purpose of this report is to, based on the Open62541 implementation, develop software that

extends OPC UA with PubSub functionality and methods that enable two or more instances to run as

an FX application, meaning that the program publishes and subscribes data simultaneously. Once the

software is developed, we integrate it on an AnyBus CompactCom 40 module. This will work as a

communication prototype that proves that it is possible to extend OPC UA with FX into HMS Networks’

products.

Open62541 is used to gather libraries and methods needed for OPC UA development. The software is

developed using C in Visual Studios and integrated into the hardware using Eclipse.

The result in the form of software was a connection-oriented data exchange, based on the OPC UA

information model, where two or more instances can publish and subscribe to information

simultaneously. HMS Networks can use the result on their way to implementing OPC UA FX in their

products.

In conclusion, the Open62541 implementation is beneficial when developing the OPC UA protocol.

The software is complete, but it could not be fully integrated into the CompactCom module. The

achieved application is still useful for the development of HMS Network’s products that might use the

protocol.

Sammanfattning
Open Platform Communication Unified Architechure, eller OPC UA, är ett av de världsledande

kommunikationsprotokoll som är specialiserat i att förena kommunikation i produktionssystem. 2018

startade OPC Foundation, ett industriellt konsortium, ett initiativ vid namn OPC UA Field eXchange

med målet att utvekcla det nuvarande protokollet så att det kan användas till kommunikation på låg

nivå, exempelvis mellan sensorer och ställdon. Denna rapport utforskar ifall det är möjligt att utveckla

protokollet och integrera det i HMS Networks modul AnyBus CompactCom 40.

Problemformluleringen baseras på framtida behov hos fabriker relaterat till automatisering. För att

konkurrera framöver behöver fabriker anpassa sig till utvecklingen inom automatisering. OPC UA FX

fokuserar på decentralierad kommunikation mellan enheter som fältanordning, maskin och moln

samtidigt för att belastningen ska delas upp över hela systemet. Samtidigt som enheter i industiella

nätverket fritt ska kunna överföra data mellan varandra oberoende vilken tillverkare som skapat

enheten.

Syftet med arbetet är att, baserat på Open62541, utveckla PubSub teknologi med metoder som

möjlighetsgör att två eller fler instanser av en FX applikation ska kunna transportera data genom att

prenumerera på och publicera data samtidigt. När mjukvaran fungerar är tanken att integrera

mjukvaran på en AnyBus CompactCom 40 modul för att bevisa att implementationen är möjlig i ett

praktiskt sammanhang.

Open62541 används för att inkludera nödvändiga OPC UA bibliotek, funktionalitet och datatyper.

Protokollet utvecklas i C i en VisualStudio miljö och integreras med hjälp av Eclipse.

Resultatet i form av mjukvara var en kopplings intriktat data utbyte, baserad på OPC UA information

modell, där en eller två instanser av ett program kan publicera och prenumerera på data samtidigt.

HMS Networks kan använda resultatet i arbetet att implementera OPC UA FX i deras produkter.

Sammanfattningsvis är Open62541 ett mycket användbart verktyg för utvekcling av OPC UA protokol.

Dessvärre lyckades inte integrationen av mjukvaran i CompactCom modulen helt och hållet, men det

som åstadkommits i arbetet kan i hög grad användas för fortsatt utveckling av OPC UA FX i HMS

Networks produkter.

Table of contents
1. Introduction .. 1

1.1. Problem Statement ... 1

1.1.1. Question Formulation ... 1

1.2. Purpose and Scope ... 2

1.2.1. Requirements .. 2

1.2.2. Constraints .. 3

1.3. Outline .. 3

2. Background ... 5

2.1. The OPC Foundation and OPC UA ... 5

2.2. Theory and Technical Description... 7

3. Method ... 11

3.1. Tools and resources .. 11

3.2. Development .. 11

4. Results ... 15

4.1. Software .. 15

4.1.1. Elaboration .. 15

4.2. Hardware .. 18

5. Discussion ... 21

5.1. Economic and Environmental aspects .. 21

6. Conclusion ... 23

References .. 25

1

1. Introduction
Manufacturing is moving towards more efficient and unified systems. With the Industrial Internet of

things (IIoT) being on the rise, it is no longer enough for only large machines or segments of a

production line to communicate with each other. For a true IIoT network to exist, every part of the

system must be connected to the industrial network. Currently, a new protocol for decentralized

communication in production automation is being developed by a market-leading organization (Open

Platform Communication (OPC) Foundation) called OPC UA Field eXchange (OPC UA FX), previously

named Field Level Communications (FLC). The initiative aims to extend the reach of a world-leading

industrial communication protocol, OPC Unified Architecture (UA), to field level and allow devices

such as sensors or actuators to communicate with the rest of the IT system [1].

This bachelor thesis was created by HMS Networks to contribute to the development of their

embedded systems. Therefore the authors of this report did not construct their thesis. Instead, it was

defined based on the current and future needs of HMS Networks’ customers in the production

automation industry. HMS Networks needs a prototype because they want to be able to provide a

product utilizing OPC UA FX to their customers in the future.

1.1. Problem Statement

Allowing devices as low-level as sensors and actuators to communicate using the same protocol as

the rest of the system would create a more unified production system where all data is easily

accessible without any significant challenge for setting up or maintaining the system. FX technology is

currently being developed, and companies all over the world are taking measures to update their

products into new concepts to be able to compete in the future. This is because decentralized IT

systems are more efficient than current Client/Server (CS) systems when a larger amount of devices

are connected in a system. In a study on OPC UA performance [2], CS communication was shown to

negatively impact the performance of any server in the network when 20 or more devices are

connected to it due to the overhead when dealing with sessions as CS communication does. Publisher

and Subscriber (PubSub) communication, on the other hand, collects a group of data, publishes it to

the network with a set interval or in response to some action. The client or server does not have to

establish a session or make requests of what and when the device wants data. This is much less

demanding on the server CPU. OPC UA FX uses the PubSub functionality to allow back and forth

communication between devices, allowing simple components to communicate efficiently with the

rest of the system. This has the benefit of enabling the industry to rely on a single protocol for all

communication, which decreases complexity when designing and maintaining IT systems. HMS

Networks provides OPC UA as an addon to industrial communication protocols that use, for example,

PROFINET or EtherNet/IP™. OPC UA provides the ability to send device data such as statistics and

device analytics to an IT system. OPC UA FX is needed to compete with PROFINET and EtherNet/IP™

so that OPC UA can be used for both device data and communication between devices. To satisfy their

customers’ needs, they have to implement the extended FX protocol in their solutions. For that to

happen, a prototype needs to be constructed to know if it is possible to implement FX and a prototype

to base their future projects on.

1.1.1. Question Formulation

• Is the implementation of OPC UA FX possible in an Anybus CompactCom 40 module?

• Does Open62541 have the tools needed to develop the OPC UA FX protocol?

2

1.2. Purpose and Scope
The purpose of this thesis is to develop a prototype for HMS Networks that shows it is possible to

integrate OPC UA FX technology into their future embedded system products. In this project, the aim

is to contribute to the development of OPC UA FX in HMS Networks product AnyBus CompactCom 40.

1.2.1. Requirements
To achieve this, several requirements are set out as guidelines for this project. The software is to be

developed so that it is compatible with OPC UA. This means that the project can be based on the

existing OPC UA open-source implementation Open62541, and the project consists of adding FX

functionalities and implementing them into the CompactCom module, which leads to some software

challenges. For the software to acquire FX functionality, some methods must be created.

First of all, the FX functionality demands PubSub functionality, which means that when an entity such

as a device or machine is added to an industrial network, it should be able to publish and subscribe to

data simultaneously. Secondly, the FX information model specifies methods that make it possible to

connect entities on the enterprise network with each other, which means that the user ought to be

able to define the entity’s communication parameters and data variables to exchange. Finally, the FX

software requires a method that can dissolve a connection between devices in the network. It is simply

a method a user can call to remove any running FX connection that was created as a complement to

the Establish Connection method. This method is called Close Connection. Being able to close a

connection is just as important as establishing it since the connections are meant to be created and

closed during runtime without shutting down or disturbing the main CPU server. Details about

message creation and how data transfer using these methods are meant to behave are explained in

section 2.2.

SubscribedDataSets defines the variable set the received data should be written/stored to. In PubSub,

these can be created when a subscriber is initiated. However, in FX, these must be created before a

connection is established and maintained after a connection is closed, which is a choice that HMS

Networks decided on. This is not currently how it works in Open62541, so this must be a requirement

for the project.

For the hardware development, the requirements are not as many as for the software. The hardware

should work in the same way the software design does, but instead of running the functions created

for a PC, it should run on the CompactCom module in conjunction with a server located locally on the

computer. This is, in theory, a matter of porting the software to the module. In practice, the difference

in hardware might cause issues with memory allocation or lack of processing power available in a PC

environment. The CompactCom module should then be able to establish a connection to the PC by

being directly connected to the PC via Ethernet and executing the Establish Connection method.

For clarification, the project must:

• Be created based on the OPC UA open-source implementation of OPC UA, the Open62541

project.

• Have software that enables PubSub communication:

o Create variables that can be published and subscribed to.

o Establish Connection, a method that establishes a connection between two instances

of an FX software application and enables two or more entities to send and receive

data simultaneously and in both directions.

o Close Connection, a method that dissolves a connection between two entities on the

enterprise network without disturbing the central server CPU.

3

• Transfer data using the OPC UA information model and the process explained in section 2.2.

• Have SubscribedDataSets be predefined in the information model when starting the device.

• Have integrated this software into the CompactCom module. Communication between the PC

and the module should be possible.

1.2.2. Constraints
There are limitations set up in this project due to time constraints and to avoid fulfilling requirements

that are irrelevant to the purpose. The following constraints were decided upon. First, security

measures in the form of encrypted data, signed messages, etc., are not relevant to implement when

developing this prototype to prove the thesis. The time consumption of security consideration is too

great and is only relevant once it is proven that the thesis is correct. There are two alternatives to

messaging techniques between entities within the PubSub network, using a broker and broker-less.

The broker alternative uses protocols like AMQP and MQTT to communicate to a broker middleware

when distributing messages across the IT network whilst a broker-less protocol uses the

communication protocol UDP [3]. However, the OPC UA FX specification defines UDP as the only

protocol to be used [1].

1.3. Outline
This report is structured into five parts: Background, Method, Results, Discussion, and Conclusion. The

Background contains a discussion regarding the production industry’s current communication

situation and why the innovation is an essential step towards a more properly connected and dynamic

production industry. Relevant research regarding OPC UA performance and functionalities is

highlighted and how it ties into the choices made in this project. The method will describe the process

used to achieve the goal of creating a functioning prototype. Under Results, a description of the

outcome of the development can be found, along with which goals were achieved and how they

satisfy the specifications. The Discussion section expands upon the results and presents the parts of

the project that were not achieved to the degree that was expected. The future for the product and

what could have been improved or changed during development is discussed as well as an

interpretation of the results. In the last part, the report is concluded.

4

5

2. Background

2.1. The OPC Foundation and OPC UA
The OPC Foundation started as a task force group in 1994 when several large corporations, including

Fisher-Rosemount, Rockwell Software, Opto 22, Intellution, and Intuitive Technology, cooperated to

create a secure and reliable interoperability standard for production devices, including sensors,

instruments, and PLCs no matter which vendor the device was created by [4]. They managed to do so

in less than a year. The foundation still operates as an industrial consortium and is responsible for

maintaining and ensuring open specifications and standardizing acquired process data

communication. Currently, the OPC Foundation has 773 members, including world-leading industries

in different branches like Siemens, Schneider, and Microsoft [5].

The OPC Foundation’s original communication protocol was called OPC, OLE for Process Control, and

later changed to Open Platform Communication [4]. While popular at the time, it was also constrained

in many ways. It only ran on windows since it was based on OLE, COM, and DCOM, which was

developed by Microsoft. In 2006 OPC Unified Architecture (OPC UA) was released. It improved on the

original OPC protocol in lots of ways but mainly cross-platform compatibility. OPC UA is still in use to

this day since it allows for communication between devices regardless of vendor or operating system.

It does this by making the devices identify themselves and tell the network what they can do, just like

how a regular printer informs a computer what it is and whether it can print in color or not, for

example. The protocol has since release been updated and revised, bringing new functions and

changes along the way.

In 2018, OPC UA specification 1.04 part 14 introduced PubSub functionality, allowing devices to

publish data to any number of recipients without knowledge of those recipients [3]. Similarly, devices

can subscribe to specific published data. This is an improvement for several reasons, one of the

essential being scalability. As the number of devices in an IT system increases, the server handling

communication between those devices must scale accordingly. PubSub nearly eliminates that need

since devices can directly publish data once, and any devices that need access to that data can do so

without directly requesting it from the publisher. The session management overhead is eliminated,

meaning more resources can be used for delivering data. The authors of a paper on PubSub

performance [2] found that a Raspberry Pi Zero was able to send 40 000 signals/second using PubSub

compared to 20 000 signals/second when using CS. It concludes that CPU usage is the main bottleneck

for OPC UA communication and confirms that PubSub is less demanding for large-scale operation.

While CS communication should still be used for some applications, these results show that IT systems

with large amounts of communication devices can significantly benefit from implementing PubSub

into parts of their system.

A depiction of the difference between PubSub and CS communication can be seen in Figure 1. In the

CS model, the server communicates with each client In a separate session, meaning the number of

sessions scales according to the number of clients. This increases CPU usage and reduces performance

relative to the number of sessions. In the PubSub model, the publisher only publishes once regardless

of the number of subscribers. As the number of subscribers increases, the publisher’s load stays

constant. Higher numbers of connections to the network still impact the performance. However, this

does not require sessions to be established, so efficiency is higher. The way the network handles the

message distribution depends on the choice of middleware. UDP networks broadcast the messages

across the network, which can overload the network cause problems, but improving the connection

with a broker middleware can have significant benefits, as shown in a paper that implemented a

synchronization algorithm to improve performance [6].

6

Figure 1 - CS and PubSub Communication difference

Along with the PubSub functionality, another initiative called OPC UA Field Level Communication was

introduced. The result of the FLC initiative was OPC UA Field eXchange. OPC UA FX is an extension of

the OPC UA protocol and utilizes PubSub to allow sensors, actuators, and other low-level devices to

communicate with the rest of the system. This has the aforementioned advantage of scalability [2],

and since FX is an extension of OPC UA, industries have the potential to unify entire IT systems [7].

The heterogeneity of current industrial IT systems increases complexity and cost. The FX

implementation brings homogeneity to the field-level devices, eliminating translation issues and

moving the responsibility of compatibility from the IT engineers to the device’s manufacturer [1]. The

targeted devices are smaller devices that previously used various protocols to communicate, creating

the heterogeneity that keeps the complexity of an IT system more complicated than it would be with

OPC UA FX.

The industrial protocol market has numerous competing standards. The two largest are EtherNet/IP™

and PROFINET. PROFINET was introduced in 2003, while EtherNet/IP™ was introduced back in 1995.

PROFINET has an ethernet market share of 23%. It is the second most popular protocol behind

EtherNet/IP™ that controls 30% of the market. It is also important to note that Ethernet is on the rise

in industrial use and has recently overtaken Fieldbus’s overall market share [8]. Because of this,

homogenizing the ethernet market is more important than ever to enable a true IIoT application. The

advantage of OPC UA over its competitors on the field level is the cross-platform compatibility which

allows for more straightforward implementation of products from different vendors [9]. The size and

7

impact level of The OPC Foundation is important when considering the impact the FX technology will

have on the industry.

HMS Networks is the company that created the project this report covers. They are an international

tech company originating from Halmstad, Sweden, developing hardware/software solutions for

industrial automation systems. One of their primary products, Anybus CompactCom 40, functions as

a gateway and embedded system that implements OPC UA to enable complex production systems to

work as a unified system. HMS Networks created the project because they want to prototype FX on

their product Anybus CompactCom 40. As mentioned, the product currently implements OPC UA

besides an industrial communication protocol, but they hope to offer the extended FX technology as

an industrial network in the CompactCom 40 series in the future. Not only would this give more

flexibility to customers when choosing a solution, but it is vital for a company that develops

communication solutions to keep up to date and innovate with its products. Otherwise, the market

could move on with this technology and leave the old communication solutions behind. Because of

this, extending the OPC UA protocol to include FX functionality is critical.

2.2. Theory and Technical Description
The OPC UA PubSub communication model is a central concept in this project and is a replacement

for the CS pattern. PubSub allows the distribution of data and events from an OPC UA information

source to interested observers inside a device network as well as in IT and analytics cloud systems.

Since PubSub communication is very different from regular CS communication, it is important to

understand how data is published in the IT system. Therefore a visual representation of the structure

of a message is shown in Figure 2. The circles represent the two devices, and the “Configuration tool”

is the tool that configures the connection parameters. DataSetSetMetaData is the configuration data

that gives information about the connection to the devices and is distributed when the connection is

established. Data is extracted from an information space, formatted to a DataSet and then published

as a message to the network middleware for any interested subscriber to use. The message is

published using a DataSetWriter which is an object with a unique identifier that turns the entire

DataSet into a message that can be published to the network. The messages are represented as grey

rectangles in the figure. Arrows in the figure show the direction the data travels. The DataSet is in turn

made up of any number of DataSetFields. A DataSetField is defined to represent any information and

can be thought of as a name and value pair representing an event, object, or variable. All DataSets are

created when the server starts before the connections have been established. The DataSet that is

meant to be published is then specified once Establish Connection method is called. This way, the

same DataSet can be used for multiple connections at once without creating a DataSet for each

connection.

8

Figure 2 - Message creation with PubSub

The Subscriber works mostly the same as a publisher except in reverse. The message is identified

based on the IDs of the Publisher, DataSetWriterGroup, and DataSetWriter, and then the dataSet is

extracted using a DataSetReader and written into the Subscriber’s information space. When

developing an FX connection, the PubSub connection must first be established according to this

method, and then an identical connection must be established operating in the opposite direction.

This creates a two-way connection where the devices need to know the identifiers of the data they

are subscribing to and either know a mutual multicast address or their respective IP addresses. For

the connection to be established, a connection manager with information about the two endpoints

must inform the devices about the data they are meant to publish or subscribe to. The connection

manager is a separate entity that can be a standalone process or integrated into one or more devices

in the network.

When it comes to FX, there are some important interactions to describe and define. The interaction

model consists mainly of three components: controller, device, and compute. Figure 3 describes the

reciprocity between these. “Controller” represents a function implemented in products like

Programmable Logic Controller (PLC), Distributed Control System (DCS) controllers, or Programmable

Automation Controller (PAC). “Device” can be anything compatible with a controller, e.g., actuators

or sensors. “Compute” refers to any software application that analyzes or uses the system data on a

computer. The arrows point out which types of entities can interact with each other using the OPC UA

FX protocol. In the OPC UA protocol, a Device can not communicate directly to other Device entities

without using a controller or server as a middleman, but this is possible using OPC UA FX. OPC UA FX

devices represent their data using the prescribed OPC Information Model [10] based on an

Automation Component (AC). All ACs have one or more Assets and one or more Functional Entities

(FE). An Asset can be made up of one or several hardware components, e.g., actuators and sensors

that either give or receive data [1].

9

Figure 3 - Interaction model

These objects are crucial when developing PubSub applications. Many more objects and data types

are required to use OPC UA communication, not just PubSub or FX but also Client/Server. The most

important and general ones must be discussed to understand how the system is implemented and

how this project’s solution is configured [10].

• NodeId represents the identity of a node. Almost everything in the information model is a

node, for example, a variable or a dataset. It is defined using anything from an Integer to a

String. The nodeId can be used to create a new node or access it after it has been added to

the information model.

• Methods are nodeClasses that can be called upon by the connection manager to execute a

function. It can have any number of input and output arguments. Before a method can be

called, it must be added to the information model. It is the main way to interact with the

program from the connection manager.

There are some important ObjectType nodes to consider when developing PubSub specifically. The

OPC Unified Architecture is, as mentioned, based on object-oriented programming, and there are a

few predefined ObjectType nodes in Open62541 that are significant for the theory to work in practice.

When transporting information between PubSub servers, the following nodes are crucial to have

functioning OPC UA communication. [3,11].

• DataSetMetaDataType defines the name and description of the DataSet and the MetaData

for the fields of the DataSet. The configuration of the DataSetMetaData is sent to both the

Publisher and Subscriber and used for encoding and decoding the DataSetMessage.

• PublishedDataSetType contains the NodeId, AttributeId, and DataSetMetaData of the data in

the publisher’s information space.

• DataSetWriterDataType is used for configuring DataSetWriters. It contains parameters used

for message creation such as DataSetWriterId.

• WriterGroupDataType specifies WriterGroupId, publishingInterval, and keepAliveTime,

among others, for the WriterGroup.

• ReaderGroupDataType groups together a number of DataSetReaders. It is not the complete

opposite of the WriterGroupDataType, and it does not specify any identifiers of the published

data, as the WriterGroupDataType does.

• DataSetReaderDataType provides the subscriber with information of the message for reading

such as PublisherId, DataSetWriterId and SubscribedDataSetType.

• SubscribedDataSetType contains TargetVariables, the reference to the dataset that stores the

data that is read from a received message.

10

Understanding the use of these datatypes and their identifiers is important if one wishes to

comprehend how entities set up subscriptions. PublisherIDs are unique static identifiers of a device

that are configured during the setup of PubSubConnection. In theory, a device could use a different

identifier for each PubSubConnection. However, to avoid confusion, these should be assumed to be

the same for every connection. They are contained in the message’s metadata and helps the

Subscriber identify what dataset the data should be mapped to. Once a subscriber has found a

message by the publisher it subscribes to, it must identify that the message is the correct one, as a

single publisher is capable of publishing any number of messages, but a subscriber might only be

interested in one of those messages. The WriterGroupId and DataSetWriterId of the publisher are also

contained in the metadata. If those match the corresponding identifiers in the Subscriber’s

DataSetReaderDataType, the message is read by the Subscriber, and the dataSetFields are stored in

the TargetVariables in the SubscribedDataSet.

In Figure 4, this method of identification is shown. The Subscriber is interested in variable A and no

other variables. First, the PublisherID is set to 1 to specify the device. The WriterGroup and

DataSetWriterID are also set to 1. The Subscriber receives the entire dataset containing both A and B

but only saves A into a variable since the SubscribedDataSet only contains one TargetVariable. The

Subscriber could start subscribing to B by simply adding another variable connected to the

DataSetReader, or subscribe to C by also setting up another connection with the same settings, but

where DataSetWriterID is set to 2 instead.

Figure 4 - Example of using IDs to subscribe

11

3. Method

3.1. Tools and resources
The choice of tools is not up to the authors since this project is intended for further development by

HMS Networks. Open62541 is an open-source implementation of OPC UA in the programming

language C that will be used and built upon during development. Open62541 version 1.2 already has

support for PubSub and provides some resources to help set up a working connection, making it useful

for this project’s purposes. Researchers of the OPC Foundations initiative [12] concluded that the

Open62541 implementation is one of the best options for OPC UA development. Git is used for version

control and collaboration purposes, both with the engineers at HMS Networks and the authors of this

report.

Open62541 is included as a library in the source files and is built using CMake and Visual Studios 2019.

The way CMake is configured when building open62541 is dependant on how the nodeset part of the

project is developed by HMS Networks and changes as the project moves forward.

When implementing the hardware protocol, Eclipse is used with Segger’s debugging module J-link to

implement the solution into the hardware once the software has been designed for Windows. UA-

Expert is the program for where the connection is controlled, and the methods we develop are called.

It acts as a connection manager for the most part of the project. Wireshark is useful for monitoring

data over Ethernet and will be mostly used in combination with UA-Expert for making sure the data is

sent correctly.

When completing the software, the only tests are ones required to confirm that the application is

sending data in the specific case that it is set up for. If data is sent from one application to another

and that behavior can be seen in UAExpert, that is seen as a success. Testing the application in any

more comprehensive way could be preferable but is not a requirement put forward by HMS Networks.

For prototype purposes, simple verification of functionality using UAExpert is sufficient. The

performance level is not relevant when analyzing the results since meeting the FX specifications and

creating a prototype that can be improved further is the main goal.

HMS Networks provide resources along the way, such as hardware for the implementation and

preliminary specifications from the OPC Foundation intended for the development of the prototype.

3.2. Development
There are two entities providing specifications that must be satisfied to succeed, HMS and The OPC

Foundation. HMS Networks desires a functioning prototype of the FX protocol implemented into their

Anybus CompactCom product. To satisfy these requirements, the OPC Foundation’s specifications

regarding OPC UA, PubSub, and FX must also be met.

This must fulfill many requirements from the PubSub specifications in [3] before it can be developed

to fulfill the FX specifications outlined in [13]. Both of these specifications must be fulfilled for a

connection to be classified as OPC UA FX. However, since this is a prototype that will be developed

further and because of the time constraints, the specifications desired for this project do not include

every part of the FX specifications. In this section, the slightly narrower specifications for the project

will be explained and discussed. In essence, a PubSub connection consists of any number of publishers

and subscribers. The publisher sends data that the Subscriber picks up. Transforming a PubSub

connection into an FX connection means that the published data must flow both ways, meaning that

both parties are publishers and subscribers simultaneously. This feature is at the core of the FX

12

functionality and was explained in section 2.2. OPC UA FX requires a publisher and a subscriber at

both ends of the connection.

In this project, UDP is used according to the FX specification; however, another protocol may be used

in PubSub applications. The AMQP and MQTT messaging protocols, unlike UDP, are what is called a

broker. UDP packet handling forms something we will refer to as brokerless. A broker distributes

packets in a smarter way than a brokerless protocol. UDP simply broadcasts messages across the

system, and while simple to implement, it can overwhelm the network with traffic if there are too

many devices broadcasting. The use of a broker and a synchronization algorithm can significantly

improve performance for a PubSub system. However, it also has high complexity [6]. Support for

broker protocols could be something that gets implemented at some point in the future, but at the

moment, the only protocol that is defined in the FX specification is UDP, so this must be used for all

PubSub and FX communication.

The connection is meant to support both unicast and multicast, meaning it can publish data to either

one or multiple devices at a time. This functionality can be decided by using either the unicast or

multicast address for the UDP connection.

Developing a method for establishing a connection to another device is the primary objective during

software development. This method will create a connection that publishes messages to the network

using the PubSub method, as previously discussed. Since the implementation has support for PubSub

message creation, the process is slightly simpler in practice than described in section 2.2. The

implementation has built-in support for message creation, meaning the DataSetWriter and

DataSetReader are ready to be used for message creation without the need for manually defining the

message creation process. The DataSetWriter is then added to a DataSetWriterGroup, and the

Subscriber creates a DataSetReader and adds it to a DataSetReaderGroup. The Open62541 stack uses

a data type called TargetVariables that point to the nodes that consume the data from the published

DataSet. As long as the message identifiers are matching on both the publisher and subscriber sides,

the connection should be functional. This is where Wireshark and UAExpert are useful for verifying

that the connection is sending and receiving data as expected. Once the connection has been

confirmed to transfer data one way, it needs to be extended to operate both ways. As explained

previously, this is a matter of duplicating the one-way connection to work in the opposite direction.

At this point of development, the connection setup should be created so the connection can be

created during runtime, and the identifiers can be entered through UAExpert, which acts as the

connection manager in this case. A complement to the Establish Connection method is the Close

Connection method since connections should be able to be both created and deleted during runtime.

The Close Connection method removes everything created by the Establish Connection method but

leaves the variable nodes containing whatever data they sent or received. This is because the variable

nodes are part of the device and should be able to be published again when the Establish Connection

method is called a second time. The user can use the Establish Connection method to specify which

DataSet containing the variable nodes are published and which nodes receive data.

The variable nodes that are published are formated into a DataSet. In the PubSub specification and

therefore also in Open62541, these datasets can only be created once the pubsub connection has

been created [3,14]. The objective is for the datasets to be created before the connection is

established, however as is clear in Figure 5 that this is not possible when using SubscribedDataSets as

they are currently implemented in Open62541. Here the arrows represent dependency, or in what

order the different nodes can be created. SubscribedDataSet can only be created once DataSetReader

has been created and so on. The SubscribedDataSet and its children are highlighted pink in the figure

13

for clarification. It should be noted that the “Server” in this figure does not refer to a physical server

but a node in the information model that is used when creating all other nodes such as

DataSetWriters, DataSetReaders, etc. A Server node exists in every device that uses OPC UA or OPC

UA FX and is not the same thing as using CS communication.

Figure 5 - SubscribedDataSet Hierarchy

To be able to maintain the same dataset and publish it in multiple PubSub connections at the same

time, another solution is required. By detaching the SubscribedDataSet from the DataSetReader, it

can be created independently from the DataSetReader. The adjusted hierarchy can be seen in Figure

6. This, in turn, means that the SubscribedDataSet can be created without a PubSubConnection. This

SubscribedDataSet is more similar to PublishedDataSets since they can both be created independently

of the PubSubConnection and contain variable nodes in some capacity. However, in a

PublishedDataSet, those nodes are PublishedDataSetFields which are meant to be formatted into a

dataset for publishing, while the SubscribedDataSet contain TargetVariableDataType, which links the

dataset from the DataSetReader to variable nodes in the information model.

Figure 6 - Adjusted SubscribedDataSet Hierarchy

14

The advantage of having SubscribedDataSets be created independently of the PubSubConnection is

that the dataset can be maintained between connections. This is not implemented into Open62541 in

the current release, so this functionality must be implemented manually. Further details of the

implementation can not be disclosed in this report.

For clarity, the following is an explanation of how the development is carried out and how the

methods in Open62541 are utilized. A connection between two devices using the PubSub functionality

in OPC UA must first be established. First, a server is created using the UA_Server dataType. Variable

nodes and a PublishedDataSet are created on the server using the methods UA_Server_add-

VariableNode, and UA_Server_addPublishedDataSet. Then the variable nodes are added to the

PublishedDataSet by creating publishedDataSetFields using UA_Server_addDataSetField and

specifying the nodeIDs of the variable nodes in the DataSetFieldConfiguration. The dataset can be

published by creating a PubSubConnection by calling UA_Server_addPubSubConnection and

UA_PubSubConnection_regist and adding a DataSetWriterGroup and DataSetWriter with

UA_Server_addWriterGroup, UA_Server_setWriterGroupOperational, and UA_Server_addDataSet-

Writer. This procedure is according to the Open62541 documentation [15]. The DataSetWriterGroup,

DataSetWriter, and PubSubConnection, however, should only be called once the EstablishConnections

method is called, so they are placed in the EstablishConnections method instead of being called on

startup.

The Subscriber is normally configured by first creating variable nodes and connecting them to the

DataSetReader by calling UA_Server_DataSetReader_createTargetVariables. This only applies to the

implementation of SubscribedDataSets that requires a DataSetReader to be set up first. This is, as

previously stated, not what is done in this project. However, the details of how the Subscriber is set

up can not be explained any further than the explanation above.

The method EstablishConnections is defined to have specific input arguments according to the

documentation [16]. By providing a reference to the method, the user can call the node from

UAExpert, and the result is the referenced method being called. In EstablishConnections the

PubSubConnection, DataSetWriter, DataSetWriterGroup, DataSetReader and DataSetReaderGroup

are all created as explained above. CloseConnections is defined in a similar way, except the nodes are

removed instead. UA_Server_removePubSubConnection deletes the PubSubConnection,

WriterGroup, and DataSetWriter nodes at the same time. UA_Server_removeDataSetReader and

UA_Server_remove- ReaderGroup then delete the ReaderGroup and DataSetReader respectively.

Implementing the software solution into the CompactCom module requires the PC application to be

fully developed first. The methods that form the connection can be transferred to the application that

will be flashed onto the module to run the program. Some additional software setup is required for

the module to function properly, so the same code that was implemented in the software is

transferred to an existing project provided by HMS Networks. Once the application has been ported

to the CompactCom module, testing the module will be by transferring data between the module and

a PC running the PC implementation of the application. Data can be transferred between the two by

uploading the software to the module using J-Link and connecting the module to the PC directly with

an ethernet cable. The PC also runs UAExpert, which can see the representation of the information

model, read the variables, and call the methods of both programs just as during software

development.

15

4. Results

4.1. Software
The software results can be seen in the functionalities of the FlcApplication program. When starting

the application, the user is able to set the port of the server as well as a publisher id. The application

automatically initiates a Pub/Sub connection to the network and appends the Establish Connection

and Close Connection methods to the address space in UA Expert. When calling upon the Establish

Connection method, the user is able to construct connections to other servers within the IP address.

The user determines the DataSetWriterGroupID and DataSetWriterID of the particular server as well

as the PublisherID, DataSetWriterGroupID and DataSetWriterID of the entity the server wishes to

receive data from. Again, it should be noted that the servers that are referenced here are nodes in the

information model and not actual servers. When the user creates two or more instances of

FlcApplication and connects them for communication, we have functioning FX communication. In

other words, several entities can transmit data between each other by publishing and subscribing to

data simultaneously.

Both the published dataset and subscribed dataset can be seen in the information model before the

connection is established and is not deleted when the CloseCommunications method is called, which,

according to the theory we have presented in this report, is a requirement.

4.1.1. Elaboration
When starting the FlcApplication, the program automatically defines the IP address where the

application will operate. In the software implementation, this is the same for all instances. The user

then enters a port number and publisher ID for the instance, as seen in Figure 7. In the software

implementation of OPC UA FX, the uniqueness of the port number is important because each instance

of FlcApplication that becomes a server must be put in a unique place in the computer’s memory and

on the same IP address, illustrated in Figure 8.

Figure 7 - Commands for Running the Application

16

Figure 8 - Multiple Servers on Computer

Any number of servers can now be created locally on the computer. Using the OPC UA specialized tool

UAExpert, these servers appear under the project, and we can see interesting information about the

servers under address space, as is shown in Figure 9. Under address space, two methods can be seen,

Establish Connection and Close Connection. As mentioned, Establish Connections is crucial in this

project because it enables servers to define what data they want to listen to. As seen in Figure 9, a

pop-up window is presented when Establish Connection is called. In our software implementation of

FX, each entity is only able to subscribe to one server at a time, which is not completely according to

the theory. This is not a disaster but somewhat a shortcoming of the result as a whole. The reason for

this is the way connections are stored. Many NodeIDs are stored in global variables. If a second

connection would be added, some variables would be overwritten, which means losing the reference

to the first connection.

Figure 9 – Overview and EstablishConnection input Arguments

The user can define what Publisher ID, DataSetWriterID, and DataSetWriterGroupID a particular

server is interested in. In Figure 9, the user sets the first server’s own DataSetWriterGroupID and

DataSetWriter to 1. The server’s PublisherID is already set when starting the instance. Also seen in

Figure 9 is how the user sets the identification of what server it intends to listen to. Here the target

server’s PublisherID, DataSetWriterGroupID and DataSetWriterID is set to 2. The last input field tells

the server which dataset it should publish. In this case, the user wants to publish the dataset with

nodeId 58192. The user then repeats the same steps for the other two servers. Server two’s

17

DataSetWriterGroupID and DataSetWriterID will be set set to 1 and own DataSetWriterGroupID and

DataSetWriter to 1 while its target DataSetWriterGroupID and DataSetWriterID and PublisherID is set

to 1. The third server’s DataSetWriterGroupID and DataSetWriterID is set to 3 while its target Publisher

ID DataSetWriterGroupID and DataSetWriter is set to 1. We now have a fully functioning OPC UA FX

software protocol. As seen in Figure 10, the software network setup is illustrated. Server 1 publishes

network messages to the UDP transport protocol that both Server 2 and Server 3 subscribe to. Server

1 subscribes to Server 2 and can pick up the messages that Server 2 publishes. Server 3 subscribes to

Server 1, but no one takes up the messages that Server 3 publishes.

Figure 10 - Multiple connected servers on the same computer

Figure 11 illustrates how the different servers send and receive values simultaneously from the

example described above. The colored boxes represent the different servers. Pink is Server 1, green is

Server 2, and blue is Server 3. As can be seen, Server 1 publishes values 1111 and 1122 while Server 2

and Server 3 receive those values. At the same time, Server 1 receives Server 2’s published values

2211 and 2222. As expected, no one receives Server 3’s values 3311 and 3322.

18

Figure 11 - Publish and Subscribe Example

When calling the Close Connection method from a server, it effectively removes the connection to the

other server without affecting itself or the rest of the network. Again, we would have wanted to

achieve so that every SubscribedDataSet would be able to choose the specific publisher it wants to

end the subscription to, but because we did not manage to implement so that the server can subscribe

to multiple publishers at once, there is no way to implement this in Close Connection. The way the

method works at the moment is that the function takes the DataSetReaderID and

DataSetReaderGroupID and deletes the associating DataSetReader/DataSetReaderGroup from the

server. Close Connection also removes the corresponding subscribing nodes from the information

model that was added when the Established Connection was called.

When comparing the software result with the requirement set out, such as adding SubscribedDataSets

and various methods to the server, the project may be considered a success; however, the created

prototype does not use the complete OPC UA FX protocol. The prototype that was created would be

more accurately described as a connection-oriented data exchange using PubSub. The only testing

that confirms the functionality is the way the information model is displayed in UAExpert. When the

server is started, the SubscribedDataSet can be seen as “Subscribed variables” even before Establish

Connection is called. And when establishing a connection, the same nodes receive and display the

data that it is subscribing to. This is illustrated in Figure 9.

4.2. Hardware
The software could be flashed onto the CompactCom module and display the variables,

PublishedDataSets, writers, and readers properly. However, the SubscribedDataSets can not receive

data in the way that the software can in a PC environment. The reason for this has not been entirely

identified, but it is known that the SubscribedDataSet is not added to the information model properly,

meaning the module’s variables can not receive any data. This does not account for why the PC

application does not receive data, as it was shown during software development that the application

is both sending and receiving data as intended. All other functionality is identical to the software

application running on the PC. In Figure 12, the hardware result is illustrated; it is made up of two

running FX servers. The one to the left is identical to the servers in Figure 10, while the server to the

19

right is the CompactCom module with integrated OPC UA FX onto it. Also seen in Figure 12 is the

connection between the servers that, unfortunately, is not functional. The connection between the

CompactCom module and the network is the most likely connection to be the one that is broken,

marked with an “X.”

Figure 12 - Connecting the PC to the CompactCom module

One thing to note is that Open62541 was originally built with the compilation option

NAMESPACE_ZERO set to FULL, which means the entire library of nodeIDs is built, even the ones that

are not necessary. This creates a 2.8MB file which is too large for the CompactCom module to read.

This issue was solved by changing the option from FULL to REDUCED and only include the necessary

nodeIDs, which is not an issue in itself but means that there are some differences between the PC and

Anybus software.

20

21

5. Discussion
The project succeeded in most of the set goals but did not wholly replicate that success in the

CompactCom module. While the prototype does not qualify as an FX prototype, the basis for further

development is there, and the connection is functional in a PC environment. It was demonstrated that

Open62541 is a suitable implementation for this functionality but lacks some features, such as

creating SubscribedDataSets before the PubSubConnection, which has to be implemented manually.

No conclusions can be confidently drawn from the hardware results but since the reasons for the

communication not functioning are likely software related, the Anybus CompactCom 40 may still be a

suitable module to integrate OPC UA FX into. The project provides a basis for more research and

development to be based on and create another prototype or end product.

If this project would be done differently, many things could change. Probably the largest deciding

factor of how this project is executed is the choice of OPC UA implementation. As previously

mentioned, there are other implementations other than Open62541 to choose from, each with its

own strengths and weaknesses. The UA-.NETStandard could, for example, also have been used, which

might have given slightly different results. Using other implementations would impact what kind of

hardware can be used, so the project could have vastly different results.

The lack of proper testing could be seen as an issue, and proper tests would be of great use when

discussing what parts of the project were successful and not. However, this was not something that

was requested by HMS Networks, as the scope of the project was already very large with many

features that needed implementing in a short amount of time. This would be a major part that should

be considered more for future work. Simulating different environments and scenarios in software

would be the type of test that would be of interest. These scenarios could be used to examine if or

how a great number of devices break or impacts the protocol as it is now. They could also be used to

test how the system would react to a sudden communication interruption, such as disconnecting and

reconnecting an ethernet cable. Using the finished module in a real system to test how it performs in

practice rather than in simulations would also be a good way to approach tests if they were to be

carried out. These are the types of tests that would be considered “proper” tests since they would

test many weak points and scenarios to make sure the device behaves as expected in every scenario

rather than the single test case of one PC and one module.

5.1. Economic and Environmental aspects
While this product is an alteration on an already existing product, there are still differences that have

an economic and environmental impact that should be examined and compared to the traditional CS

communication method using the preexisting protocols. Since the FX protocol reduces the load on the

server CPU compared to CS communication, the conclusion could be drawn that OPC UA FX is more

economical due to the reduced need for high-performance servers. This could also be considered

again from an environmental point of view as well, since the need to upgrade the servers as

production scales up would diminish, resulting in fewer components being used. Even though this

project did not show that FX communication is possible on the CompactCom module, it made strides

to enable that possibility in future projects. If it could be shown that the Anybus CompactCom 40 can

successfully use the OPC UA FX protocol, it would mean that existing hardware can use this technology

without needing to manufacture a custom module. This would be beneficial both economically for

HMS Networks and their customers and environmentally, as HMS Networks would not need to

manufacture any other possibly less environmentally friendly modules. More development and tests

would need to be made to properly determine how this product would impact the economy and the

environment.

22

The software, even without the functioning hardware integration, shows that OPC UA could expand

into more devices even though they might or might not require some other hardware. This would

mean that configuring an IT system would require a lot fewer resources compared to using different

protocols for different levels of communication, as has been previously mentioned regarding

PROFINET and EtherNet/IP. The solution created in this project makes it very easy to change which

variables and datasets are published or subscribed to and uses the same information model as other

OPC UA applications and devices.

The protocol can only have one connection at a time due to the nodeIDs being stored in variables that

would be overwritten if another connection was established. This could be changed somewhat easily

but was neglected because getting the module to communicate with the PC was deemed more

important during development. It would have been the next priority if porting the software would

have been a success.

23

6. Conclusion
In conclusion, Open62541 was used to create a software prototype of the OPC UA FX protocol for a

windows environment to allow further development for HMS Networks. Different Techniques were

used, such as the use of defined methods on Open62541 and changing SubscribedDataSets to create

custom functionality. The results show that the software can send data to more than one Subscriber,

and it can subscribe to a single publisher. While not all goals were reached, this is good enough to

fulfill the requirements for a very early prototype of the OPC UA FX protocol.

 The resulting product is an application for Windows that can communicate with other instances of

itself by connecting with UAExpert and calling the Establish Connection method with the proper input

arguments. The same software with a reduced nodeset exists in the CompactCom module. The

module uses the same information model and creates the same datasets, but it cannot communicate

with the PC application for unknown reasons, most likely related to the way SubscribedDataSets are

implemented or a problem when sending data to the network.

When comparing the goals of the project to the achieved prototype, the result is the following:

• The application is created with Open62541

• The application can create variables that can be published and subscribed to.

• The user can establish and Close Connection by calling the corresponding method, but only

one connection can be maintained at a time.

• Transfer of data using the information model and PubSub is possible.

• The SubscribedDataSets are created before the connection is established and are maintained

between connections.

• The software is integrated into the CompactCom module but can not transfer data to the PC

application as intended. This goal was not achieved and would require further development.

This project provided HMS Networks with a new way for devices to communicate. This is also a very

early prototype of a protocol that has not yet been fully defined. It provided the authors of this report

with knowledge of the development that is occurring within the industrial communication space and

experience with the internals of OPC UA FX, Open62541, and the roadblocks that came up during

development.

More features and testing could be added to the project and the module, not only to verify the

functionality further but also to verify the performance gains that you would expect from this type of

communication. Due to time constraints, it was not possible for this project. However, comparing the

communication that was achieved to the CompactCom module that is currently on the market would

bring even more insight into how this project solves the issue of scalability in industries. The use of a

broker would also be ideal for verifying the functionality. Creating the same functionality using a

different stack implementation such as UA-.NETStandard and/or comparing it to Open62541 could

give more insight into how companies could implement this protocol simpler or more efficiently.

24

25

References
1. The OPC Foundation. OPC for Field Level Communication – A Theory of Operation. 2020.

2. Burger A, Koziolek H, Rückert J, Platenius-Mohr M, Stomberg G. Bottleneck identification and
performance modeling of OPC UA communication models. ICPE 2019 - Proc 2019 ACM/SPEC
Int Conf Perform Eng. 2019;231–42.

3. OPC Foundation. OPC UA Specification Part 14 - PubSub 1.04. 2018; Available from:
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-14-
pubsub/

4. Zheng L, Nakagawa H. OPC (OLE for Process Control) Specification and its Developments 3
OPC - A Defacto Standard. 2002;917–20.

5. OPC Foundation. OPC Foundation members [Internet]. [cited 2021 Mar 4]. Available from:
https://opcfoundation.org/members

6. Enste U, Mahnke W. OPC Unified Architecture: Die nächste Stufe der Interoperabilität. At-
Automatisierungstechnik. 2011;59(7):397–405.

7. Industrial Ethernet is now bigger than Fieldbuses [Internet]. HMS. 2018. Available from:
https://www.anybus.com/about-us/news/2018/02/16/industrial-ethernet-is-now-bigger-
than-fieldbuses

8. Sciullo L, Bhattacharjee S, Kovatsch M. Bringing deterministic industrial networking to the
W3C web of things with TSN and OPC UA. ACM Int Conf Proceeding Ser. 2020;

9. OPC Foundation. OPC UA Specification Part 5 - Information Model 1.04. OPC Found
[Internet]. 2017; Available from:
https://reference.opcfoundation.org/v104/Core/docs/Part5/

10. Liu Z, Bellot P. OPC UA PubSub implementation and configuration. 2019 6th Int Conf Syst
Informatics, ICSAI 2019. 2019;(Icsai):1063–8.

11. Kirdan E, Pahl M, Waedt K, Mühlbauer N. Feature-based Comparison of Open Source OPC-UA
Implementations. 2021;

12. OPC Foundation. Field Level Communications (FLC) Initiative [Internet]. [cited 2021 Mar 1].
Available from: https://opcfoundation.org/flc/

13. Ioana A, Korodi A. Improving OPC UA publish-subscribe mechanism over UDP with
synchronization algorithm and multithreading broker application. Sensors (Switzerland).
2020;20(19):1–21.

14. Open62541. Open62541 Publish/Subscribe [Internet]. Open62541. [cited 2021 May 5].
Available from: https://open62541.org/doc/1.2/pubsub.html

PO Box 823, SE-301 18 Halmstad
Phone: +35 46 16 71 00
E-mail: registrator@hh.se
www.hh.se

Samuel Andreasson, 24, Student at
Halmstad University

Jesper Palmér, 23, Student at
Halmstad University

