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Abstract
We address the use of selfie ocular images captured with smartphones to estimate age and
gender. Partial face occlusion has become an issue due to the mandatory use of face
masks. Also, the use of mobile devices has exploded, with the pandemic further accel-
erating the migration to digital services. However, state‐of‐the‐art solutions in related
tasks such as identity or expression recognition employ large Convolutional Neural
Networks, whose use in mobile devices is infeasible due to hardware limitations and size
restrictions of downloadable applications. To counteract this, we adapt two existing
lightweight CNNs proposed in the context of the ImageNet Challenge, and two
additional architectures proposed for mobile face recognition. Since datasets for soft‐
biometrics prediction using selfie images are limited, we counteract over‐fitting by
using networks pre‐trained on ImageNet. Furthermore, some networks are further pre‐
trained for face recognition, for which very large training databases are available. Since
both tasks employ similar input data, we hypothesise that such strategy can be beneficial
for soft‐biometrics estimation. A comprehensive study of the effects of different pre‐
training over the employed architectures is carried out, showing that, in most cases, a
better accuracy is obtained after the networks have been fine‐tuned for face recognition.

1 | INTRODUCTION

Recent research has explored the automatic extraction of in-
formation such as gender, age, ethnicity, etc. of an individual,
known as soft‐biometrics [1]. It can be deduced from bio-
metric data like face photos, voice, gait, hand or body images,
etc. One of the most natural ways is face analysis [2], but given
the use of masks due to the COVID‐19 pandemic, the face
appears occluded even in cooperative settings, leaving the
ocular region as the only visible part. In recent years, the ocular
region has gained attention as a stand‐alone modality for a
variety of tasks, including person recognition [3], soft‐
biometrics estimation [4], or liveness detection [5]. Accord-
ingly, this work is concerned with the challenge of estimating
soft‐biometrics when only the ocular region is available.
Additionally, we are interested in mobile environments [6]. The
pandemic has accelerated the migration to the digital domain,
converting mobiles in data hubs used for all type of

transactions [7]. In such context, selfie images are increasingly
used in a variety of applications, so they enjoy huge popularity
and acceptability [8]. Social networks or photo retouching are
typical examples, but selfies are becoming common for
authentication in online banking or payment services too.

Soft‐biometrics information may not allow accurate person
recognition, but in unconstrained scenarios where hard bio-
metric traits (like face or iris) may suffer from degradation, it
has been shown to improve the performance of the primary
system [9]. If a sufficient number of characteristics are avail-
able, it might be even possible to carry out recognition with
just soft‐biometrics [10]. Such information has other diverse
practical applications as well [1]. One example is targeted
advertising, where customised products or services can be
offered if age, gender or other characteristics of the customer
are automatically inferred. In a similar vein, Human‐Computer
Interaction (HCI) can be greatly improved by knowing the
particularities of the person who is interacting with the system.
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In biometrics identification, search across large databases can
be facilitated by filtering subjects with the same characteristics.
On the one hand, it reduces the amount of comparisons, since
only a portion of the database would be searched. On the other
hand, it also allows to attain a better accuracy, since the errors
of identification systems increases in proportion to the amount
of comparisons [11]. Similarly, searches can be facilitated while
looking for specific individuals in images or videos [12]. The
complexity can be reduced enormously by searching or
tracking persons only fulfiling certain semantic attributes (e.g. a
young male with beard), filtering out those that are sufficiently
distinct [13]. Another important fields of application are access
control to products or services based on age (such as gambling,
casinos, or games) and child pornography detection. The rapid
growth of image and video collections due to high‐bandwidth
Internet and cheap storage is being accompanied by the ne-
cessity of efficient identification of child pornography, often
within very large repositories of hundreds of thousands or
millions of images [14].

Soft‐biometrics using RGB ocular images captured by
front cameras of smartphones (selfies) is a relatively new
problem [15], with very few works [16–20]. Selfie images
usually contain degradations like blur, uneven light and back-
ground, variable pose, poor resolution, etc. due to uncon-
strained environments and mobile operation. In addition, front
cameras usually have lower quality in comparison to back‐
facing ones. In such conditions, soft‐biometric attributes like
gender or age may be extracted more reliably than features
from primary biometric traits such as face or iris [21]. It may
not even be necessary to look actively to the camera, so after
initial authentication with a primary modality, the user may be
continuously authenticated via soft‐biometrics without active
cooperation [22]. Transparent authentication is possible with
other smartphone sensors as well, such as keystroke dynamics
[23] or readings from the accelerometer or gyroscope [24].
Solutions to counteract the lack of resolution in primary mo-
dalities have been proposed too, such as super‐resolution [25],
so they are usable even at low resolution. However, the tech-
niques in use are sensitive to acquisition conditions, degrading
quickly with non‐frontal view, illumination or expression
changes. They also rely on a precise image alignment, which is
an issue in low resolution, where blurring creates ambiguities
for proper localization of facial landmarks or iris boundaries.

Another issue has to do with the limited resources of
mobile devices. Recent developments in computer vision
involve deep learning solutions which, given enough data,
produce impressive performance in a variety of tasks, including
those using biometric data [26–29]. But state‐of‐the‐art solu-
tions are usually based on deep Convolutional Neural Net-
works (CNN) with dozens of millions of parameters, and
whose models typically have hundreds of megabytes, for
example [30]. This makes unfeasible their applicability to
mobile devices, both because of computational constraints,
and of size limitations imposed by marketplaces to down-
loadable applications. If we look at state‐of‐the‐art results with
the database that we employ in the present paper [31–33]
(Table 9), they all use very deep networks which would not be

transferable to mobiles. Thus, models capable of operating
under the restrictions of such environments are necessary.
Another limitation is the lack of large databases of ocular
images for soft‐biometrics [15]. To overcome this, it is com-
mon to start with networks pre‐trained on another tasks for
which large databases exist. Examples include the generic
ImageNet Challenge [34], as done for example in [19, 35], or
face recognition datasets [32, 36]. Both are approaches that we
follow in the present paper as well.

1.1 | Contributions

This article focuses on the use of smartphone ocular images to
estimate age and gender. Partial faces can be expected in un-
constrained environments, but also in controlled ones due to the
use of masks, thus our focus on the ocular region as the only
visible part of the face. To be clear, we have not employed im-
ages of people wearing masks, or occluded images, but we have
cropped the ocular area from selfie face images. This also allows
to compare the use of the entire face or only the ocular region
with the same input data. A preliminary version appeared in a
conference [4]. Here, we employ another database, Adience [21],
consisting of Flickr images uploaded with smartphones that are
jointly annotated with age and gender. It also has a more
balanced distribution between classes. Given its in‐the‐wild
nature, it provides a more demanding setup. In some other
works (see Tables 1 and 2), images are taken in controlled en-
vironments, for example from face databases (such as MORPH
or FERET), or using close‐up capture typical of iris acquisitions
(such as Cross‐Eyed, GFI, UTIRIS, ND‐Iris‐0405, etc.).

Datasets for age and gender prediction from social media are
still relatively limited [1]. To counteract over‐fitting, some works
use small CNNs of two or three convolutional layers trained
from scratch [16, 17, 35, 37]. To be able to use more complex
networks, one possibility is to pre‐train them on a generic task
for which large databases exist, like ImageNet [34]. This is done
for example in [19, 35], and in the present paper. In the previous
study, we employed CNNs pre‐trained on ImageNet as well, and
classification was done with Support Vector Machines (SVMs).
In contrast, end‐to‐end training of the networks on the target
domain is evaluated here too. Also, the present study evaluates
networks pre‐trained in a related task, face recognition [6, 52],
where large databases are available. Since both tasks use the same
type of input data, we aim at analysing if such face recognition
pre‐training can be beneficial for soft‐biometrics. Other works
have followed this strategy as well [32, 36], but they employ the
entire face. Thus, to the best of our knowledge, taking advantage
of networks pre‐trained for face recognition for the task of
ocular soft‐biometrics can be considered novel.

Finally, this paper is oriented towards the use of smart-
phone images. This demands architectures capable of working
in mobile devices, a constraint not considered in our previous
study. The lighter CNNs that we employ [53, 54] have been
proposed for common visual tasks in the context of the
ImageNet challenge, and they have been bench‐marked for
face recognition as well [6, 55, 56]. To achieve less parameters
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and faster processing while keeping accuracy, they use tech-
niques such as point‐wise convolution, depth‐wise separable
convolution, bottleneck layers, or residual connections [54].
The models obtained have a few megabytes (Table 3), in
contrast to other popular models such as ResNet [30], which
occupy dozens or hundreds of megabytes.

The contributions of this paper to the state‐of‐the‐art are
thus:

� We summarise related works in age and gender classification
using ocular images.

� We apply two generic lightweight CNN architectures to the
tasks of age and gender estimation. The networks, Squee-
zeNet [53] and MobileNetv2 [54], were proposed in the
context of the ImageNet Challenge [34], where the networks
are pre‐trained with millions of images to classify thousands
of generic object categories.

The networks proposed within ImageNet have been used
in the literature as base models in many other recognition tasks
[57], especially when available data is insufficient to train them
from scratch.

TABLE 1 Age prediction from ocular images. Only Adience contains selfie images captured with frontal smartphone cameras. See the text for details

Work Year Features Database Spectrum Images Eyes Best Accuracy

[16] 2017 CNN Adience VIS 12,460 Both 46.97% ± 2.9 (exact), 80.96% ± 1.09 (1‐off)

[37] 2014 23 sub‐CNNs to face parts MORPH VIS 55,244 Face patches MAE = 3.63 years

[17] 2019 4 sub‐CNNs to face parts Adience VIS 19,370 Face patches 51.03% ± 4.63 (exact), 83.41% ± 3.17 (1‐off).

[38] 2019 SURF/SVM‐kNN own VIS 500 Both 96.57%

[4] 2020 CNN/SVM LFW VIS 12,007 One/Both 60.2/60% (exact)

This paper CNN/SVM Adience VIS 11,299 One/Both 45.9/48.8% (exact), 83.1/86.2% (1‐off)

Abbreviations: CNN, convolutional neural networks; MAE, Mean Absolute Error; SVM, Support vector machines.

TABLE 2 Gender prediction from ocular images. Only Adience and VISOB contain selfie images captured with frontal smartphone cameras. See the text
for details

Work Year Features/Classifier Database Spectrum Images Eyes Best Accuracy

[39] 2010 LBP/LDA, PCA, SVM web data VIS 936 Both 85%

[40] 2011 Shape features/MD, LDA, SVM FRGC VIS 800 One 97%

[41] 2012 ICA/NN FERET VIS 200 Both 90%

[42] 2016 HOG, LBP, LTP, WLD/SVM group pictures VIS 2921 Both 83%

[43] 2016 BSIF/SVM BioCOP NIR 3314 One 85%

[18] 2017 Textural descriptors/SVM, MLP VISOB VIS 1200 One 90.2%

[19] 2018 CNN/SVM, MLP, KNN, AdaBoost, CNN VISOB VIS 1200 One/Both 89.01/90.0

[44] 2017 Intensity, Texture, Shape/Random Forest Cross‐Eyed VIS + NIR 3840 One 90%

[35] 2018 CNN/NN, CNN GFI NIR 4976 One 85.48%

[45] 2019 Intensity, Texture, Shape/SVM, ensembles GFI, UTIRIS, Cross‐Eyed, UNAB VIS + NIR 11,973 One 89.22%

[46] 2019 SRCNN/Random Forest CSIP, MICHE, MOBBIO, own VIS 6450 One 90.15%

[47] 2018 CNN GFI NIR 3000 One/Both 85.06/87.26%

[48] 2017 Deep Class‐Encoder GFI, ND‐Iris‐0405 NIR 67,979 83.17%

[49] 2018 GIST perceptual descriptors self‐captured multi‐spectral 8320 One 81%

[50] 2019 BSIF, LBP, LPQ/SVM BioCOP2009, Cosmetic Contact, GFI NIR 51,006 One 86%

[20] 2019 compass LBP/SVM Adience, cFERET, LFW, CUFS, CUFSF VIS 1757 One/Both 84.06/83.27%

[51] 2019 ULBP + BSA/SVM CASIA‐Iris‐Distance, MGBC NIR, VIS 705 One/Both 66.67/78%

[4] 2020 CNN/SVM LFW VIS 12,007 One/Both 92.6/93.4%

This paper CNN/SVM Adience VIS 11,299 One/Both 76.6/78.9%

Abbreviations: BSIF, Binariszed Statistical Image Feature; CNN, Convolutional Neural Networks; HOB, histograms of oriented gradients; NIR, near‐infrared; SVM, Support Vector
Machines.
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There is the assumption that architectures that perform
well on a generic task like ImageNet will perform well on other
vision tasks [58]. Thus, it is common to use ImageNet pre‐
trained networks just as fixed feature extractors, taking the
output of the last layers as descriptor, and use it to train a
classifier (like SVM) for the new task.

In some cases, the network is re‐trained taking ImageNet
weights as initialisation even if there is sufficient training data
for the new task, since it can produce faster convergence than
scratch initialisation [58].

The networks that we have selected for the present paper
are two of the smallest generic architectures proposed within
ImageNet, specifically tailored for mobile environments.

To be precise, the architectures employed were presented
by their respective authors [53, 54] in the context of the
ImageNet challenge, and here we apply them to the task of
ocular soft‐biometrics classification.

We have also implemented two existing lightweight archi-
tectures proposed specifically in previous studies for face
recognition using mobile devices, MobileFaceNets [55] and
MobiFace [56]. They are based on MobileNetv2, but with a
smaller size and number of parameters.

� To assess if more complex networks can be beneficial, we
also evaluate two CNN‐based on the large ResNet50 model
[30] and on Squeeze‐and‐Excitation (SE) blocks [59].
ResNet was also proposed within ImageNet, presenting the
concept of residual connections to ease the training of
CNNs. They have been also applied successfully to face
recognition [52]. In this paper, we apply these existing ar-
chitectures to soft‐biometric classification.

Proposed without mobile restrictions in mind, they have
significantly more parameters and size than the networks of the
previous point (Table 3). However, as we have observed, it
does not translate in superior performance, at least with the
amount of training data available in this paper.

� The available networks are comprehensively evaluated for
age and gender prediction with smartphone ocular images.
For comparative purposes, we also use the entire face. To

this aim, we use a challenging dataset, Adience [21], which
consists of selfie images captured in real‐world conditions
with smartphones. To the best of our knowledge, this is the
first work that compares the use of face and ocular images
for age and gender prediction with this database. We also
conduct experiments using two different ocular ROIs con-
sisting of single eye images and combined descriptors from
both eyes.

� Classification experiments with the networks are done in
two ways: by using feature vectors from the layer prior to
the classification layer, and then training a separate SVM
classifier; and by training the networks end‐to‐end. Prior to
this, the networks are initialised in different ways. First, we
use the large‐scale ImageNet pre‐training [34], an approach
followed in many other classification tasks [57]. It allows to
use the network as feature extractor and simply train a
classifier, or to facilitate end‐to‐end training if there is little
data in the target domain [58]. Due to previous research [6,
52], the CNNs are also available after being fine‐tuned for
face recognition with two large databases [52, 60]. Even if
face recognition is a different task, we hypothesise that such
fine‐tuning can be beneficial for soft‐biometrics classifica-
tion. Indeed, facial soft‐biometrics indicators also allow to
separate identities [9], so features learn for one task can aid
the other. In addition, since the ocular region appears in face
images, we speculate that networks trained for face recog-
nition can benefit soft‐biometric estimation using ocular
images as well.

� Results of our experiments are reported in several ways.
First, the accuracy of the networks is reported for the
various initializations and classification options evaluated.

Convergence of the end‐to‐end training is also analysing by
showing the training curves, including training and inference
times.

Finally, t‐SNE scatter plots of the vectors given by the
last layer of the networks are also provided, showing pro-
gressive separation of the classes as the network progresses
from a generic training (ImageNet) to an end‐to‐end training
which also includes face recognition fine‐tuning in the
process.

The rest of the paper is organised as follows. A summary
of related works in age and gender classification using ocular
images is given in Section 2. Section 3 then describes the
networks employed. The experimental framework, including
database and protocol, is given in Section 4. Extensive
experimental results are provided in Section 5, followed by
conclusions in Section 6.

2 | RELATED WORKS ON AGE AND
GENDER CLASSIFICATION USING
OCULAR IMAGES

Pioneering studies of age or gender estimation from RGB
ocular smartphone images were carried out by Rattani et al.
[16, 18, 19]. Previously, near‐infrared (NIR) iris images for age

TABLE 3 Networks evaluated in this paper. The vector size
corresponds to the layer prior to the classification layer of each CNN (used
for SVM training)

Network
Input Conv Model Para‐ Vector
Size Layers Size metres Size

MobileNetv2 [54] 113 � 113 53 13 MB 3.5 M 1280

SqueezeNet [53] 113 � 113 18 4.41 MB 1.24 M 1000

MobileFaceNets [55] 113 � 113 50 4 MB 0.99 M 512

MobiFace [56] 113 � 113 45 11.3 MB n/a 512

ResNet50 [52] 224 � 224 50 146 MB 25.6 M 2048

SENet50 [52] 224 � 224 50 155 MB 28.1 M 2048

Abbreviations: CNN, Convolutional Neural Networks; SVM, Support Vector Machines.
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estimation were employed, taking advantage of available iris
databases [61, 62]. These studies used geometric or textural
information, attaining an accuracy of ∼64%. Gender estima-
tion from iris texture had been also proposed [40, 63–69],
reaching an accuracy over 91% [66]. These early works fol-
lowed the pipeline of iris recognition systems, so soft‐
biometrics classification was done extracting features from
the segmented iris region (even if the surrounding ocular re-
gion is visible). Later works, mentioned below, have incorpo-
rated the ocular region to the analysis, even if the images are
captured using traditional NIR iris sensors. Before the avail-
ability of specific ocular databases, it was also common to crop
the ocular region from face databases like FRGC [40], FERET
[41], web‐retrieved data [39], or pictures of groups of people
[42]. There are also works using the entire face [70, 71] but due
to space, we concentrate only on ocular images. Tables 1 and 2
summarise previous work on age and gender prediction. Only
two databases (Adience and VISOB) are captured with frontal
smartphone cameras (selfie‐like). Databases like MORPH,
LFW, FRGC, FERET, etc. contain face images, of which the
ocular region is cropped. Other databases are of ocular images
captured with digital cameras (Cross‐Eyed), or iris images
with NIR sensors (e.g. BioCOP, GFI, UTIRIS, UNAB, ND‐
Iris‐0405).

Age classification from smartphone ocular images is car-
ried out in [16] using their own proposed CNN. To avoid over‐
fitting, they use a small sequential network with 3
convolutional and 2 fully‐connected layers (41,416 learnable
parameters), which takes as input a crop of 32 � 92 pixels of
the two eyes. Experiments are done with 12,460 images of the
Adience benchmark [21], which is also employed in the present
paper. The database contains face images, so the ocular ROI is
extracted by landmark localisation with the DLib detector [72].
To simulate selfie‐like case, only frontal images are retained.
The reported accuracy is 46.97 ± 2.9 (exact) and 80.96 ± 1.09
(1‐off).

A set of works apply a patch‐based approach for age
estimation, in which crops of face regions are used [17, 37]. In
[37], the authors use 23 patches around facial landmarks to fed
23 small CNNs (of 3 convolutional layers), each CNN speci-
alised in one patch. Landmarks are detected using Active Shape
Models. The patches operate at different scales, with the larger
scale covering the entire face, and their outputs are connected
together in a fully‐connected layer. Therefore, the algorithm
rely on combining regions of the entire face. Experiments are
done with 55,244 images of the MORPH database, which in-
cludes age labels from 16 to 77 years. The Mean Absolute
Error (MAE) is of 3.63 years. The authors also found that
patches capturing smaller areas of the face give better results
than patches that capture big areas, although the best accuracy
is obtained when all scales are combined. Inspired by [37], the
authors of [17] use a CNN architecture of 4 branches, having
4.8 M learnable parameters. Each branch, of just 3 convolu-
tional layers, is specialised on one patch around the eyebrows,
eyes, nose or mouth. These regions are detected using the
OpenFace and DLib detectors [72]. The branches are then
connected to a fully‐connected layer. During training, the loss

of each branch and the loss of entire network are summed up.
However, each branch estimator is not used at inference time,
but only the concatenated soft‐max, so the system relies on the
availability of all regions. The approach is evaluated with
19,370 in‐plane aligned images of Adience. The accuracy is
51.03 ± 4.63 (exact) and 83.41 ± 3.17 (1‐off). The authors also
removed different branches to evaluate its contribution,
noticing that the absence of eyes and mouth contributed most
to reducing the accuracy (specially the eyes). This supports
studies like the present one, which concentrates on the ocular
region as the most prominent facial part for soft‐biometrics.

In a recent work [38], the authors use SURF (Speeded Up
Robust Features) to detect key‐points and extract features from
the ocular region. Then, a hybrid SVM‐kNN classifier is
applied. With a small database of 500 images, they achieve an
age accuracy of 96.57%.

More recently, we applied CNNs pre‐trained on Imagenet
to the tasks of age, gender and ethnicity [4] with 12,007 images
of the Labelled Faces in the Wild (LFW) database. One of the
CNNs is also pre‐trained for face recognition, as in the present
work, although in [4] it did not prove to be an advantage. We
extract features of different regions (face, eyes and mouth)
using intermediate layers of the networks identified in previous
works as providing good performance in ocular recognition
[73, 74]. Then, we train SVMs for classification. In overall
terms, the accuracy using ocular images only drops ∼2%–4%
in comparison to the entire face. The reported accuracy is
95.8%/64.5% in gender/age estimation (entire face), 92.6%/
60.2% (ocular images), and 90.5%/59.6% (mouth images). The
approach is also evaluated against two commercial off‐the‐
shelf systems (COTS) that employ the whole face, which are
outperformed in several tasks.

Regarding gender estimation, the work [43] pioneered the
use of different regions around the iris for prediction. It uses
Binarised Statistical Image Feature (BSIF) texture operator, and
SVM as classifier. Data consists of 3314 NIR images of the
BioCOP database. The work found that the entire ocular re-
gion provides the best accuracy (∼85%) and excluding the iris
has a small impact (∼84%). On the other hand, using only the
iris texture pushes down accuracy to less than 75%, high-
lighting the importance of the periocular region. The first study
making use of selfie ocular images was presented in [18]. It
evaluates several textural descriptors in combination with
SVMs and Multi‐layer Perceptrons (MLPs). They use 1,200
selfie images of the VISOB database captured with 3 smart-
phones. The left and right eyes are cropped to 240 � 160 pixels
with the Viola‐Jones eye detector. The work reports results for
each smartphone, with the best accuracy being 90.2%. Later,
the same authors evaluated pre‐trained and custom CNNs on
the same database [19]. The very deep VGG and ResNet
networks (pre‐trained on ImageNet), along with a custom
CNN of 3 convolutional layers, are employed. Experiments are
conducted on single eye images (of 120 � 123) and on strips of
both eyes (120 � 290). The pre‐trained networks are used to
extract feature vectors (from the last layer before soft‐max)
that feed an external classifier. The authors evaluated SVMs,
MLPs, K‐nearest neighbours (KNN), and Adaboost. The best
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accuracy (90.0 ± 1.35) was obtained with pre‐trained networks
and both eyes. The custom CNN is just behind (89.60 ± 2.91).
Using only one eye, the best accuracy is 89.01 ± 1.30 (pre‐
trained CNNs) and 87.41 ± 3.07 (custom CNN).

In [44], Tapia and Viedma address gender classification
with RGB and NIR ocular images. They employ pixel intensity,
texture features (Uniform Local Binary Patterns, ULBP), and
shape features (Histograms of Oriented Gradients, HOG) at
different scales. Classification is done with Random Forest
using 3840 images of the Cross‐Eyed database. Among the
different findings, we can highlight that: it is better to extract
features at different scales than in a single scale only, and the
fusion of features from RGB and NIR images improves ac-
curacy. They also compare the extraction of features from the
iris texture or the surrounding ocular area, finding that the
ocular area is best, attaining an accuracy of 90%.

In subsequent works, Viedma et al. [35, 45] study gender
classification with NIR ocular images. In [35], they train two
small CNNs of 2 and 3 convolutional layers from scratch. They
also use the very deep VGG‐16, VGG‐19 and Resnet‐50 ar-
chitectures (pre‐trained on ImageNet). As in [19], the pre‐
trained networks are used as fixed feature extractors to feed a
classifier (a dense neural network in this case). The authors also
fine‐tune these pre‐trained networks by freezing the initial
convolutional layers. Experiments are done with 4976 images of
120 � 160 from the GFI database, which are augmented using
several spatial transformations. The custom CNNs were found
to perform better (best accuracy 85.48%). They also observed
(via activation maps of the networks) that the ocular area that
surrounds the iris is the most relevant to classify gender, more
than the iris area itself. In [45], the authors employ the same
features as in [44], together with SVMs and nine ensemble
classifiers. They use 4 databases with gender information: GFI
(4976 images), UTIRIS (389), Cross‐Eyed (3840) and UNAB‐
gender (2768). The best accuracy is 89.22%, achieved by
selecting features from the most relevant regions using
XgBoost. As in [35], the relevant features are spread throughout
the whole ocular area with the exception of the iris.

Later on, authors from the same group [46] applied super‐
resolution convolutional networks (SRCNNs) to counteract
scale variability in the acquisition of selfie ocular images in real
conditions. They use 4 databases of VIS images: CSIP (2004
images), MOBBIO (800), MICHE (3196) and a self‐captured
one (450). Classification is done with Random Forest. The
work shows that increasing resolution (2� and 3�) improves
accuracy, achieving 90.15% (right eye) and 87.15% (left eye). In
another paper [47], they applied a small CNN of 4 convolu-
tional layers, both trained separately for each eye, and for the
fused left‐right eye images. They use 3000 NIR images of the
GFI database, showing that training the network separately for
each eye is best (87.26% accuracy).

The work [48] applies a variant of an auto‐encoder (Deep
Class‐Encoder) to predict gender and race using NIR iris im-
ages of 48 � 64 pixels. The databases employed for gender
experiments are GFI (2999 images) and ND‐Iris‐0405 (64,980
images). The best gender accuracy is 83.17% (GFI) and
82.53% (ND‐Iris‐0405).

In [49], they use GIST perceptual descriptors with
weighted kernel representation to carry out gender classifica-
tion from images captured in 8 different spectral bands
simultaneously. To this aim, the authors use a spectral imaging
camera. With a self‐captured database of 104 ocular instances
(10 different captures per instance, totalling 104 � 10 � 8
images), they achieve an average accuracy of 81%.

In [50], the authors use NIR ocular images to estimate
gender and race. They apply typical iris texture descriptors used
for recognition (Binarised Statistical Image Feature, BSIF,
Local Binary Patterns, LBP, and Local Phase Quantization,
LPQ) with SVM classifiers. Three datasets are used: Bio-
COP2009 (41,830 images), Cosmetic Contact (4,200), and GFI
(4,976). The gender accuracy from a single eye image is of
86%. The study also confirms previous research that showed
that excluding the iris region provides greater accuracy.

The authors of [20] apply a patch‐based approach for
gender estimation with 10 crops around landmarks (left eye,
right eye, complete eye region, lower nose, lip, left face, right
face, forehead and upper nose). Then, compass LBP features
are extracted from each region, and classified with one SVM
per region. Finally, the classification scores of all regions are
combined with a genetic algorithm. Experiments are done with
Adience (1757 images), colour FERET (987), LFW (5749) and
two sketch datasets, CUFS (606) and CUFSF (987 sketches
from colour FERET). The best accuracy is 95.75% (colour
FERET). The performance on Adience using the whole face is
87.71%. The authors also study each facial region individually
on the Adience database, with an accuracy of 84.06% (one eye)
and 83.27% (both eyes). Other regions of the face provide
lower accuracy (73.95%–82.71%), with the lip region providing
78.25%. This supports the findings of our previous study,
which revealed the eye region as having superior accuracy than
other regions of the face [4].

Lastly, in [51], it is proposed a multimodal system that fuses
features from the face and ocular regions. They use 300 NIR
images of CASIA‐Iris‐Distance, and 405 VIS images of the
MBGC database (one third are faces, one third are left eye, and
one third are right eye images). As features, they employ ULBP
(with overlapping blocks), and Backtracking Search Algorithm
(BSA) to reduce feature dimensionality. Classification is done
via SVM by combining the features of each available face re-
gion. With CASIA‐Iris‐Distance, the accuracy of the individual
regions is 82.00 ± 0.82 (face), 66.00 ± 0.75 (left eye),
62.00 ± 0.70 (right eye), and 78.00 ± 0.91 (both eyes). After the
fusion, accuracy goes up to 88.00 ± 0.94. With MGBC, the
accuracy is 81.67 ± 1.03 (face), 66.67 ± 0.65 (left eye),
66.67 ± 0.73 (right eye), 74.17 ± 0.35 (both eyes), and
92.51 ± 0.68 (fusion).

3 | CNNS FOR SOFT‐BIOMETRICS
PREDICTION

We extract features from the face, left and right ocular regions
(Figure 1, top) using different CNN architectures (Table 3).
Two light‐weight pre‐trained generic architectures, SqueezeNet
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and MobileNetv2, are used for feature extraction and
classification.

� SqueezeNet [53] is one of the early networks designed to
reduce the number of parameters and model size. The au-
thors proposed the use of squeeze and expand modules that
follow the bottleneck concept. First, dimensionality is
reduced with 1 � 1 point‐wise convolutions (squeeze or
bottleneck layer), followed by a layer with a larger amount of
filters (expansion layer), which includes 3 � 3 filters too.
The network uses late down‐sampling, since keeping large
activation maps should lead to a higher accuracy. With only
1.24 M parameters, 4.6 MB and 18 convolutional layers, it
matched AlexNet accuracy on ImageNet with 50x fewer
parameters.

� MobileNetv2 [54] employs depth‐wise separable convo-
lutions and inverted residual structures to achieve a light
architecture. Depth‐wise separable convolution works in
two stages, first performing filtering with a single filter
per input channel, followed by a 1 � 1 point‐wise
convolution that linearly combine the channels. In the
case of 3 � 3 filters, this reduces computations by a
factor of eight or nine compared to a standard full
convolution, with a small cost in accuracy [75]. Inverted
residual structures, also called bottleneck residual blocks
with expansion, consists of first expanding the number
of channels with 1 � 1 point‐wise filters. Then, they are
processed with a large amount of 3 � 3 depth‐wise
separable filters. Finally, the number of channels is
reduced again with 1 � 1 point‐wise filters. A shortcut
(residual) connection is added between the input and the
output of such structure to improve the ability of a
gradient to propagate across layers. This network has
3.5 M parameters, a size of 13Mb and 53 convolutional
layers.

The original SqueezeNet and MobileNetv2 are modified to
employ an input size of 113 � 113 � 3. The stride of the first
convolutional layer is changed from 2 to 1, so the networks can
remain unchanged (more importantly, we can use ImageNet
weights). We have also implemented two lightweight architec-
tures proposed specifically for face recognition using mobile
devices. They are MobileFaceNets [55] and MobiFace [56].
Both are based on MobileNetV2, but with smaller expansion
factors on bottleneck layers to make the network smaller. They
also employ a reduced input image size of 113 � 113 � 3.
MobileFaceNets has 0.99 M parameters, 50 convolutional
layers, and 4 MB. It uses Global Depth‐wise Convolution
(GDC) to substitute the standard Global Average Pooling
(GAP) at the end of the network. The motivation is that GAP
treats all pixels of the last channels equally, but in face recog-
nition, the centre and corner pixels should be weighted
differently It also uses PReLU as non‐linearity, and fast down‐
sampling at the beginning. MobiFace [56] also employs fast
down‐sampling and PReLU, but the authors changed GAP by
a fully‐connected layer to allow learning of different weights
for each spatial region of the last channels. This network has a
size of 11.3 MB and 45 convolutional layers.

Finally, we evaluate the large models of [52] for face
recognition. They use ResNet50 [30] and SE‐ResNet50
(abbreviated as SENet50) [59] as backbone architectures, with
an input size of 224� 224� 3. ResNet networks presented the
idea of residual connections to ease CNN training. Followed
later by many (including MobileNetV2), residual connections
allow much deeper networks. The network employed here,
ResNet50, has 50 convolutional layers, but there are deeper
ResNets of even 1001 layers [76]. The Squeeze‐and‐Excitation
(SE) blocks [59], on the other hand, explicitly model channel
relationships to adaptively recalibrate channel‐wise feature re-
sponses. SE blocks can be integrated with other architectures,
such as ResNet, to improve its representation power.

F I GURE 1 Top: Extraction of the regions of interest. Bottom: Soft‐biometrics classification framework
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4 | EXPERIMENTAL FRAMEWORK

4.1 | Database

We use the Adience benchmark [21], designed for age and
gender classification. The dataset consists of Flickr images
uploaded automatically with smartphones. Some examples are
shown in Figure 2. Given the uncontrolled nature of such
images, they have high variability in pose, lightning, etc. The
downloaded dataset includes 26,580 images from 2,284 sub-
jects. To simulate selfie captures, we removed images without
frontal pose, resulting in 11,299 images. They are then rotated
w.r.t. the axis crossing the eyes, and resized to an inter‐eye
distance of 105 pixels (average of the database). Facial land-
marks are extracted using the MTCNN detector [77]. Then, a
face image of 224 � 224 is extracted around the mass centre of
the landmarks, together with the ocular regions (of 113 � 113
each). The breakdown of images into the different classes is
given in Table 4.

4.2 | Protocol

The Adience benchmark specifies a 5‐fold cross‐validation
protocol, with splits pre‐selected to avoid images from the
same Flickr album appearing in both training and testing
sets in the same fold. Given a test fold, classification
models are trained with the remaining four folds. Classifi-
cation results, therefore, consist of mean accuracy and
standard error over the five folds. Following [21], we also
provide the 1‐off age classification rate, in which errors of
one age group are considered correct classifications. The
training folds are augmented by mirroring the images hor-
izontally. In addition, the illumination of each image is
varied via gamma correction with γ = 0.5, 1, 1.5 (γ = 1
logically leaving the image unchanged). This way, from a
single face or ocular image, we generate 6 training images,
with which we expect to counteract over‐fitting and
accommodate variations in illumination. Finally, when

feeding the CNNs, images are resized to the corresponding
input size indicated in Table 3.

Classification is done in two ways (Figure 1, bottom): i) by
training a linear SVM [78] using feature vectors extracted from
the CNNs, and ii) by training the CNNs end‐to‐end. Prior to
training, the CNNs are initialised in different ways, as will be
explained in Section 5. To train the SVMs, we use vectors from
the layer prior to the classification layer, with the size of the
feature vectors given in Table 3. When there are more than two
classes (age classification), a one‐vs‐one multi‐class approach is
used. For every feature and N classes, N(N − 1)/2 binary
SVMs are used. Classification is based on which class has most
number of binary classifications towards it (voting scheme).
Regarding end‐to‐end training, we change the last fully con-
nected layer of each network to match the number of classes
(2 for gender, 8 for age). Batch‐normalisation and dropout at
50% is added before the fully‐connected layer to counteract
over‐fitting. The networks are trained using soft‐max as loss
function and Adam as optimiser, with mini‐batches of 128 (we
also tried SGDM initially, but Adam provided better accuracy
overall, therefore we skipped SGDM). The learning rate is
0.001. During training, 20% of images of each class are set
aside for validation in order to detect over‐fitting and stop
training accordingly. When the networks are initialised from
scratch, training is stopped after five epochs. In all other cases,
training is stopped after two epochs. Experiments have been
done in stationary computers running Ubuntu, with an i9‐9900
processor, 64 Gb RAM, and two NVIDIA RTX 2080 Ti
GPUs. We carry out training using Matlab r2020b, while the
implementations of ResNet50 and SENet50 are run using
MatConvNet.

5 | RESULTS

5.1 | Pre‐trained CNN models

The SqueezeNet, MobileNetv2 and ResNet50 CNNs are
available pre‐trained on the large‐scale ImageNet dataset [34].

F I GURE 2 Images from the Adience database (from [21])

TABLE 4 Breakdown of face images of
the database into the different classes

Male Female 0–2 4–6 8–13 15–20 25–32 38–43 48–53 60–99

5,353 5,946 1,003 1,546 1,665 1,095 3,298 1,578 551 563
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They are also available after they have been fine‐tuned for face
recognition using two large face databases [6, 52]. To do so, the
networks are trained for biometric identification on the MS‐
Celeb‐1M database [60] (MS1M for short), and then fine‐
tuned on the VGGFace2 database [52]. The images of these
databases, downloaded from the Internet, show large variations
in pose, age, ethnicity, lightning and background (see Figure 3).
MS1M has 10M images from 100k celebrities (with an average
of 81 images per subject), while VGGFace2 has 3.31 M images
of 9131 subjects (362.6 images per subject). Fine‐tuned
ResNet50 and SENet50 models are made available by the
authors of [52], initialised from scratch. SqueezeNet and
MobileNetv2 are trained by us as described in [6], initialised
using ImageNet weights, and producing the models trained
with MS1M, and then on VGGFace2. MobileFaceNets and
MobiFace are also trained by us with the same protocol, but
initialised from scratch.

Table 5 shows the classification performance obtained with
these pre‐trained networks, and using SVM as classifier, ac-
cording to the protocol of Section 4.2. For each CNN,
different possibilities based on the available pre‐training are
reported. We provide age and gender classification results using
as input either the whole face or the ocular region. The col-
umns named ‘ocular’ refer to the left and right eyes separately
(each image is classified independently), while ‘ocular L + R’
refer to the combination of both eyes (by averaging the CNN
descriptors before calling the SVM classifier).

In the majority of networks, a better accuracy is obtained
after the CNNs are fine‐tuned for face recognition on MS1M
or VGGFace2. Also, it is better in general if the networks have
undergone the double fine‐tuning, first on MS1M, and then on
VGGFace2. This goes in line with the experimentation of
[6, 52], which showed that face recognition performance could
be improved after this double fine‐tuning. These results also
show that a CNN trained for face recognition can be beneficial
for soft‐biometrics classification too, even if just the ocular
region is employed. Given that facial soft‐biometric cues can
be used for identity recognition as well [9], features learnt for
recognition are expected to carry soft‐biometrics information,
and vice‐versa. The only exception is ResNet50, where a better

accuracy in general is obtained only with the ImageNet
training. This shows as well that even ImageNet training can be
beneficial for soft‐biometrics (as shown in our previous paper
too [4]), since the accuracy of ResNet50 on ImageNet is similar
or better in some cases than the accuracy obtained with other
CNNs after they are fine‐tuned for face recognition. With
SENet50 we cannot draw any special conclusion since there is
only one pre‐training available. What it can be said is that it
performs worse than ResNet50, even if in face recognition
tasks, SENet50 is better (as reported in [6, 52]).

Regarding face versus ocular classification, there is no clear
winner when the networks are only trained with ImageNet.
Gender accuracy is marginally better with the entire face, with
the biggest difference observed with ResNet50 (78.3% vs.
71.9%). Regarding age, the ocular area shows comparable ac-
curacy, and even better in some cases, for example: 38.7%
versus 40.4% (ResNet50, exact accuracy), or 36.6% versus
37.8% (MobileNetv2, exact accuracy). The indicated ocular
accuracy refers to both eyes (‘ocular L + R’), which is observed
to improve by 3%‐4% in comparison to using one eye only.
This comparable accuracy between face and ocular regions is a
very interesting result. Since the networks are trained for a
generic recognition task like ImageNet, and not particularly
optimised to the use of facial or ocular images, we can safely
assume that the ocular region is a powerful region for soft‐
biometrics estimation, and comparable to the entire face.
This is in line with our previous findings as well [4].

When the networks are fine‐tuned for face recognition
with MS1M or VGGFace2, accuracy with the entire face be-
comes substantially better (sometimes by ∼15%). Still, accuracy
with the ocular area is improved as well. This may be because it
appears in the training data, although in a small portion of the
image. This leads us to think that accuracy with the ocular area
could be made comparable if the CNNs are fine‐tuned for
ocular recognition instead.

Lastly, from the results of Table 5, we cannot conclude that
one CNN is better than other. A good CNN for gender is
MobileNetv2, which is the best with the ocular region, and its
face accuracy is good as well. For age classification, MobiFace
stands out. It should be highlighted though that the difference

(a) (b)

F I GURE 3 Example images of the MS1M and
VGGface2 databases
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between CNNs is 2%–3% or less in most columns. This is
interesting, considering that the networks differ in size,
sometimes substantially (Table 3). It is especially relevant to
observe that ResNet50 and SENet50 do not outperform the
others, even if the input image size and the network complexity
is higher. A final observation is that gender classification is
more accurate in general than (exact) age classification. Being a
binary classification, gender may be regarded as less difficult
than age recognition, which has eight classes. In addition, we
have employed the same database for both tasks, so age classes
contain less images for training. If we consider the 1‐off age
rate, on the other hand, age accuracy becomes better than
gender accuracy.

5.2 | CNN models fine‐tuned for soft‐
biometrics classification

Four networks are further fine‐tuned to do the classification
end‐to‐end, according to the protocol of Section 4.2. We keep
only the small CNNs, since they will be less prone to over‐
fitting, given the reduced number of images in comparison
to, for example, face recognition [6, 52]. Table 6 shows the
classification results considering different pre‐training,
including from scratch.

As in the previous section, a better accuracy is obtained
with the CNNs that are fine‐tuned first for face recognition on
MS1M or VGGFace2, rather than only on ImageNet. How-
ever, in this case, it is sufficient if the networks are just fine‐
tuned on MS1M. Training from scratch produces the worst
results, suggesting that the amount of training data is not yet
sufficient in comparison to other domains. A way to overcome
such problem is to train the networks first in other tasks for
which large‐scale databases are available, as we do in this paper.
A generic task like ImageNet can be useful [57], producing
better results than in the network is just trained from scratch.
But according to our experiments, a better solution is to use a
task for which similar training data is employed, such as face
recognition.

In Table 7 and Figure 4, we provide the training curves
over two epochs, and training/inference times of the different
models (pre‐trained on MS1M, which is the model that pro-
vides the best accuracy overall in Table 6). Due to space
constraints, we show only the results over the first fold of the
database. Figure 4 shows that most models converge over the
first epoch (first half of the horizontal axes), with the validation
accuracy showing little improvement over the second epoch.
The horizontal axes of the periocular plots reach a higher value
because for each face image, there are two separate ocular
images, so the number of iterations is doubled. It can be also
seen that the validation accuracy after the second epoch (red
and blue for gender and age, respectively) is similar in most
cases to the accuracy reported in Table 6, that is 70%–80% for
gender estimation, and 40%–50% for age estimation.
Regarding training times, ocular obviously takes double due to
the duplication of images. Also, gender and age training takes
comparatively the same time for each CNN, given that the

same images are used, but divided into different classes. The
depth of each network (convolutional layers, see Table 3)
correlates with the training time. The lightest network
(SqueezeNet) takes the least time, while the deepest ones
(MobileNetv2 and MobileFaceNets) take the longest. Inference
times have been computed with the CPU to simulate lack of
graphical power. Still, times are in the order of milliseconds,
showing correlation with the depth of the CNN as well.

Regarding face versus ocular classification, the same con-
clusions than in the previous section apply. When the networks
have not seen such type of images before (scratch or ImageNet
pre‐training), face and ocular images produce comparable
performance. The difference is just 2%–3% with most net-
works, the only exception being SqueezeNet, for which face is
better than ocular by up to 10%. On the other hand, when the
CNNs are fine‐tuned for face recognition, then accuracy with
the entire face becomes substantially better, although accuracy
with the ocular area is improved as well.

In contrast to the previous section, Table 6 shows Mobi-
leNetv2 as the clear winner, producing the best accuracy in all
tasks. This network is the more complex of all four (see
Table 3), which may explain its superiority. The other networks
should not be dismissed though, since their accuracy is just
2%–3% below in most cases, so a lighter network provides just
a slightly worse accuracy.

Comparing the results of Tables 5 and 6, we observe that the
best accuracy per network (bold elements) is in general equal or
better in the experiment of this section (Table 6), except the 1‐
off age accuracy. Even if all networks improve the exact age
estimation to a certain extent, accuracy in this task is still below
50%, which may be a sign that more training data would be
desirable. The degradation in 1‐off age accuracy may be another
sign of over‐fitting. The network that benefits the most from the
training of this section is MobiletNetv2, with improvements of
3%–5%. MobileFaceNets and MobiFace show improvements
of 2%–3% in the majority of tasks. Squeezenets shows marginal
improvements in gender estimation, with some improvements
of 2%–3% in age estimation only.

To further evaluate the improvements given by the end‐
to‐end training of this section, we have removed the fully‐
connected layers of each network, and trained SVMs instead
for classification, as in Section 5.1. Results are shown in
Table 8. Interestingly, gender accuracy is degraded, but age
shows some improvement in exact estimation (1%–3%), and
a substantial improvement in 1‐off estimation (18%–20%). For
example, the best 1‐off age face/ocular accuracy is
91.3%/86.2%, surpassing the best gender results obtained in
this paper. The results of Table 8 suggest that SVM is a better
classifier in the difficult age estimation task. Table 8 also shows
the superiority of MobileNetv2, having the best accuracy in
nearly all tasks.

Finally, we evaluate the benefits of the progressive fine‐
tuning proposed by showing in Figure 5 the scatter plots
created by t‐SNE [79] of the vectors provided by each network
just before the classification layer. The t‐SNE settings are
exaggeration = 4, perplexity = 30, learning rate = 500. For
MobileNetv2, we show results after different network training
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(left column, top to bottom): i) ImageNet (generic pre‐
training), ii) ImageNet + MS1M (fine‐tuning to face recogni-
tion), and iii) ImageNet + MS1M + Adience (fine‐tuning to
soft‐biometrics classification). It can be seen that as the plots
progresses from top to bottom, the cluster of each class tend
to separate more from the others. For gender classification, the
blue and red dots form two distinct clouds in the third row. For
age classification, clusters of age 0–2 (red), 4–6 (orange) and
8–13 (green) appear nearby, and in progressive (circular) tra-
jectory towards the light blue clusters (15–20 and 25‐32 age
groups). Then, the dark blue clusters (38–43 and 48–53)
appear, and finally, the 60–99 group (magenta). This progres-
sive ordering of age groups in the feature space reflects the
expected correlation in human age [1], with adjacent age
groups being closer to each other, and non‐adjacent age groups
appearing more distant. Similar class separations after Image-
Net + MS1M + Adience training is also observed with the
other three networks (right column). On the contrary, in
training i and ii with MobileNetv2, the clusters are spread
across a common region, without a clear separation among
them, especially with only ImageNet training. Male/female
clusters are intertwined, forming a circle‐like cloud, and the
same happens with age groups. Light blue (young adults), dark
blue (middle age) and magenta (old age) dots are spread across
the same region. Even red and orange dots (children) some-
times appear in opposite extremes of the circle‐like shape.

5.3 | Summary and comparison with
previous works

Table 9 shows a summary of the best reported accuracy of the
two previous sub‐sections (cells highlighted with a grey back-
ground in Tables 5–8). For reference, the performance of other
works using the same database for ocular age or gender esti-
mation is also shown [16, 20]. Most of the literature making use
of the Adience database employ full‐face images, with the best
published accuracy shown also at the bottom of Table 9. To
identify these works [31–33], we have reviewed all citations to
the papers describing the database [21, 80] reported by
IEEEXplore (circa 305 citations), and selected the ones with
the best published accuracy for each column. It must be noted
that although the Adience database is divided in pre‐defined
folds, the works of Table 9 may not necessarily employ the
same amount of images per fold, so results are not completely
comparable.

In gender estimation, we do not outperform the related
work that uses the ocular region [20]. It should be highlighted
that the latter uses 1757 images (see Table 2), while we employ
11,299. We outperform previous age accuracy using the ocular
region [16], which uses a set of comparable size (12,460 im-
ages). To prevent over‐fitting, the paper [16] uses a small
custom CNN trained from scratch with images of 32 � 92
(crop of the two eyes). In contrast, our networks are pre‐
trained on several tasks, including generic object classifica-
tion [34], and face recognition [6, 52], which seems a better
option. Our input image size is also bigger (113 � 113).

TABLE 7 Training and inference times of the networks evaluated in
this paper. Training times correspond to the plots shown in Figure 4. The
computers used equip a Intel i9‐9990 CPU @ 3.1 GHz, 64 Gb RAM and
two NVIDIA RTX 2080 Ti GPUs. Inference times are computed in CPU
mode

Network

Training end to end (mm:ss)

Inference
Gender Gender Age Age
Face Ocular Face Ocular

MobileNetv2 [54] 54:02 100:22 53:50 90:25 19.7 ms

SqueezeNet [53] 37:27 71:49 37:25 72:39 6.2 ms

MobileFaceNets [55] 68:53 122:35 62:27 114:58 29.2 ms

MobiFace [56] 42:31 81:17 36:25 75:13 17.5 ms

(a)

(b)

(c)

(d)

F I GURE 4 Training progress of the convolutional neural networks
(CNNs) for soft‐biometrics (with networks pre‐trained on MS1M for face
recognition, the case that provides the best accuracy in Table 6). All plots
correspond to 2 training epochs over the training set of the first fold of
Adience
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Compared to works using the full face, we do not
outperform them either [31–33]. In gender estimation, we
obtain an accuracy ∼8% behind the best method [31]. The
latter uses the very deep VGG19 CNN (535 MB, 144 M pa-
rameters), which is much more complex than the networks
employed here (Table 3). The size of the input image is
448 � 448, which is much bigger than ours. Also, a saliency
detection network is trained first on the PASCAL VOC 2012
dataset to detect the regions of interest (‘person’ or ‘face’
pixels) and indicate the classification CNNs the pixels to look
at. In age estimation, our accuracy is more competitive, ∼4%
behind the best method in 1‐off classification [33], although
the exact accuracy is still way behind the best result [32]. The
work [33] combines residual networks (ResNet) or residual
network of residual networks (RoR) with Long Short‐Term
Memory (LSTM) units. First, a ResNet or a RoR model pre‐
trained on ImageNet is fine‐tuned on the large IMDB‐
WIKI‐101 dataset (500k images with exact age label within
101 categories) for age estimation. Then, the model is fine‐
tuned on the target age dataset to extract global features of
face images. Next, to extract local features of age‐sensitive
regions, a LSTM unit is presented to find such age‐sensitive
region. Finally, age group classification is conducted by
combining the global and local features. The size of the input
image is 224 � 224, and the best reported accuracy is obtained
with a ResNet152 network as base model (214 MB), an even
deeper network that the ResNet50 evaluated in the present
paper. The work [32] follows an approach similar to ours to
prevent over‐fitting. They use the very deep VGG‐Face CNN
(516 MB) [81], which is trained to recognise faces using ∼1
million images from the Labelled Faces in the Wild and You-
Tube Faces datasets. To fine‐tune the model for age classifi-
cation, the CNN is frozen, and only the fully connected layers
are optimised. The network uses images of 224 � 224 for
training. For testing, they use images of 256 � 256, of which 5
images of 224 � 224 are extracted (four corners and centre).
Then, the five images are fed into the CNN, and the softmax
output vectors are averaged. This combination method is also
followed by the authors of Adience [80], showing some
improvement in comparison to the centre crop only.

We lastly report the detail of gender and age estimation of
each class for our approach (Tables 10 and 11). We also include
(when available) the details of other approaches of Table 9. It
can be observed that gender recognition is relatively equal
between classes (1%–2% of variation around the overall ac-
curacy), which can be a result of the classes being well balanced
in the database (Table 5). Regarding age, the accuracy between
classes is more variable. It may may be a product of the classes
being less balanced, although there are not always correlation
between class representation and accuracy. It can also be seen
that all methods show the same relative performance among
classes. This includes other works [32, 80], even if they are
based on different networks or training strategies, suggesting
that some classes may be more difficult. The classes with the
worst accuracy are 38–43 and 48–53 in the majority of col-
umns, but the class 48–53 is much less represented in the
database. The class 15–20 also has comparatively lowT

A
B
L
E

8
A
cc
ur
ac
y
of

ge
nd

er
an
d
ag
e
es
tim

at
io
n
us
in
g
C
N
N

m
od

el
s
fin

e‐
tu
ne
d
fo
r
so
ft

‐b
io
m
et
ric

s
cl
as
sifi

ca
tio

n
an
d
SV

M
cl
as
sifi

er
s.
T
he

be
st
re
su
lts

w
ith

ea
ch

ne
tw
or
k
ar
e
m
ar
ke
d
in

bo
ld
.F

or
ea
ch

co
lu
m
n,

th
e
be
st

ac
cu
ra
cy

is
hi
gh

lig
ht
ed

w
ith

a
gr
ey

ba
ck
gr
ou

nd

P
re

‐tr
ai
ni
ng

N
et
w
or
k

G
en

de
r

A
ge

Im
ag

eN
et

M
S1
M

V
G
G
Fa

ce
2

fa
ce

O
cu

la
r

O
cu

la
r
L

+
R

fa
ce

O
cu

la
r

O
cu

la
r
L

+
R

E
xa

ct
1‐
O
ff

E
xa

ct
1‐
O
ff

E
xa

ct
1‐
O
ff

X
X

M
ob

ile
N
et
v2

78
.5

±
2.
2

70
.4

±
1.
9

73
.3

±
2.
8

53
.4

±
5.
3

91
.3

±
2.
2

44
.8

±
4.
5

82
.9

±
3.
1

48
.6

±
5

86
.2

±
3.
1

X
X

X
M
ob

ile
N
et
v2

75
.6

±
2.
2

67
.6

±
2

70
.6

±
2.
7

52
±

5.
8

89
.7

±
2.
5

43
.5

±
5.
1

82
.2

±
3.
4

47
.6

±
5.
4

85
.3

±
3.
3

X
X

Sq
ue
ez
eN

et
76

.2
±

1.
9

67
.6

±
2.
7

69
.9

±
2.
9

51
.3

±
4.
8

89
.3

±
2.
8

43
.5

±
4.
9

79
.8

±
3.
3

47
±

5.
2

82
.7

±
3.
9

X
X

X
Sq

ue
ez
eN

et
77

.1
±

1.
7

66
.8

±
2.
1

69
±

2.
3

50
.6

±
5.
7

89
.3

±
2.
5

43
.3

±
3.
5

80
.9

±
2.
9

47
.4

±
4.
7

83
.9

±
3.
4

X
M
ob

ile
Fa

ce
N
et
s

76
.7

±
1.
1

69
.1

±
2

71
.8

±
2.
1

52
.7

±
3.
2

89
.8

±
2.
3

43
.3

±
3.
8

81
.4

±
3.
4

47
.1

±
4.
3

84
.6

±
3.
7

X
X

M
ob

ile
Fa

ce
N
et
s

78
.4

±
2.
6

69
.9

±
2.
2

72
.8

±
2.
7

52
.4

±
5

91
.2

±
2.
5

45
.1

±
4.
3

83
.1

±
3.
7

48
.8

±
5.
1

85
.4

±
4.
1

X
M
ob

iF
ac
e

78
.1

±
1.
8

69
.1

±
1.
7

71
.7

±
2.
4

49
.5

±
5.
4

88
.2

±
2.
5

41
.3

±
3.
4

79
.4

±
2.
8

45
.6

±
4.
2

83
.1

±
3.
3

X
X

M
ob

iF
ac
e

78
.3

±
1.
2

68
.6

±
1.
8

71
.7

±
2.
3

51
.5

±
6

90
.2

±
2.
7

43
.2

±
5.
2

81
.3

±
3.
7

47
±

6.
2

84
.7

±
3.
8

A
bb

re
vi
at
io
ns
:C

N
N
,C

on
vo

lu
tio

na
lN

eu
ra
lN

et
w
or
ks
;S

V
M
,S

up
po

rt
Ve

ct
or

M
ac
hi
ne
s.

ALONSO‐FERNANDEZ ET AL. - 575



performance. On the other hand, other classes with low rep-
resentation (0–2 and 60–99) have better performance, and in
some cases, 0–2 even shows the best accuracy. The most
represented class (25–32) does correlate with the best accuracy
in some cases, and its performance is among the best in most
columns.

6 | CONCLUSION

We are interested in lightweight network architectures capable
of providing age and gender recognition using selfie ocular
images. The literature review suggests that many of the pro-
posed methods use data captured in controlled ways, either

cropped from RGB face databases or from iris databases that
employ close‐up near‐infrared sensors. Also, to be able to
operate in mobile devices, the models have to be sufficiently
small, making infeasible the use of very large Convolutional
Neural Networks (CNNs) that provide state‐of‐the‐art results
in related tasks such as identity or expression recognition
[27, 29]. Their typical size (hundreds of megabytes) prevent
their incorporation in downloadable mobile applications,
where the entire file typically cannot exceed 100 Mb.
Accordingly, we have adapted very light models of a few
megabytes [53–56] to operate with small ocular images. The
networks employed can also provide inference in <30 ms on a
CPU, so a mobile device with sufficient power should be able
to run them in real‐time too. To counteract over‐fitting due to

F I GURE 5 Scatter plots by t‐SNE of the vectors from the layer prior to the classification layer of each convolutional neural network (CNN). The vector
size (dimensionality) of each CNN is shown in Table 3. All plots are generated with the test set of the first fold of the Adience database. Best in colour and with
zoom

TABLE 9 Summary of the best reported accuracy of the experiments of this paper. The table also includes results of recent works using the same database.
Different papers may not employ exactly the same amount of images per fold, so results are not completely comparable. The best results of our experiments are
marked in bold. For each column, the best accuracy is highlighted with a grey background

Method
Gender

Age

Face Ocular Ocular L + R

face Ocular Ocular L + R Exact 1‐Off Exact 1‐Off Exact 1‐Off

Best of Table 5 84.3 ± 0.8 72.2 ± 2.5 75.1 ± 2.7 53.8 ± 4.8 93.4 ± 1.1 41.2 ± 5.1 77 ± 3.2 45.1 ± 6.3 80.4 ± 3.7

Best of Table 6 85.3 ± 5.4 76.6 ± 3.3 78.9 ± 3.7 52 ± 5.7 73.9 ± 3.8 45.9 ± 4.3 66.9 ± 3.4 48.4 ± 4.3 69.2 ± 3.1

Best of Table 8 78.5 ± 2.2 70.4 ± 1.9 73.3 ± 2.8 53.4 ± 5.3 91.3 ± 2.2 45.1 ± 4.3 83.1 ± 3.7 48.8 ± 5.1 86.2 ± 3.1

Best of [16] (2017) ‐ ‐ ‐ ‐ ‐ ‐ ‐ 46.97 ± 2.9 80.96 ± 1.09

Best of [20] (2019) 87.71% 84.06 83.27 ‐ ‐ ‐ ‐ ‐ ‐

Best of [21] (2014) 77.8 ± 1.3 ‐ ‐ 45.1 ± 2.6 79.5 ±0 .4 ‐ ‐ ‐ ‐

Best of [80] (2015) 86.8 ± 1.4 ‐ ‐ 50.7 ± 5.1 84.7 ± 2.2 ‐ ‐ ‐ ‐

Best of [31] (2019) 93.52 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

Best of [32] (2020) ‐ ‐ ‐ 70.96 92.7 ‐ ‐ ‐ ‐

Best of [33] (2020) ‐ ‐ ‐ 67.83 ± 2.98 97.53 ± 0.59 ‐ ‐ ‐ ‐
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the lack of very large selfie datasets for age and gender pre-
diction, we use architectures pre‐trained on the ImageNet
Challenge [34], where the networks have learnt to classify
thousands of generic object categories by using millions of
training images. We also exploit the availability of very large
face recognition databases [52, 60]. Due to previous research
[6, 52], the networks are fine‐tuned first for face recognition.
We hyphothesize that such large‐scale fine‐tuning can be
beneficial for soft‐biometrics classification too, since both
tasks uses the same type of input data.

Experiments are done with 11,299 images of the Adience
benchmark, which contains in‐the‐wild smartphone images
uploaded to Flickr. The networks are evaluated for age and
gender prediction using images of the ocular region. For
comparison, they are also evaluated with the entire face.
Classification is done in two ways: by extracting feature vectors
from the layer prior to the classification layer of the network,
and then training a SVM classifier; and by training the network
end‐to‐end. We also compare different network initialisation,
including from scratch, with ImageNet weights, and fine‐tuned
for face recognition (as mentioned above).

In our experiments, training from scratch provides the
worst results, suggesting that training data is not yet sufficient
compared to other domains. Initialising the networks with a
generic task for which large databases exists (like ImageNet) is
more efficient [57], as done by in another soft‐biometrics
works too [19, 35]. But in most cases, the best accuracy is
obtained when the CNNs are fine‐tuned first for face recog-
nition. This is also observed in the t‐SNE plots of the vectors

given by the networks, where the classes appear more
separated after such face recognition pre‐training. Such phe-
nomenon is observed even if only the ocular region is used for
soft‐biometrics estimation, which we attribute to the ocular
region appearing in face images, so it is ‘seen’ by the networks
previously. Identity and soft‐biometrics are inter‐related tasks,
since they use the same input data. Indeed, soft‐biometrics can
aid identity recognition as well [9], so it is expected that one
task benefits the other. Regarding face versus ocular classifi-
cation, there is no clear winner when the networks are ini-
tialised with ImageNet, as observed in previous research too
[4]. In such a case, the networks are trained for a generic task,
without a particular optimization to facial or ocular images.
Thus, we can consider the ocular region as a powerful stand‐
alone region for soft‐biometrics, comparable to the entire
face. On the contrary, when the networks are initialised with
face recognition weights, soft‐biometrics classification with the
entire face becomes substantially better (although accuracy
with the ocular area is improved as well). Our interpretation is
that since the ocular region appears in portions of the face
image, such initialisation also benefits the ocular soft‐biometric
task, although to a lesser extent. We believe that if the networks
are fine‐tuned for ocular recognition instead, ocular
soft‐biometric classification would become comparable to the
entire face, as observed with the agnostic ImageNet
initialisation.

Regarding absolute numbers, our best accuracy is 85.3%/
93.4% in gender/1‐off age estimation with the entire face, and
78.9%/86.2% with the combination of the two eyes. In gender
ocular recognition, we do not outperform the best accuracy of
the literature with the Adience database [20], although the
mentioned work uses 10% of the images that we employ in this
paper. In age ocular recognition, we outperform previous
research [16]. The majority of research with this database is
done with full‐face images, but existing papers producing state‐
of‐the‐art results [31–33] (Table 9) all use very deep networks,
which would not be transferable to mobile devices.

As future work, we are looking into fine‐tuning the net-
works for ocular recognition, given that such area can be
cropped from face databases. This way, we expect to increase
ocular soft‐biometrics accuracy by transfer‐learning, as
observed after the networks are trained for face recognition.
Also, this work has simultaneously addressed age and gender
recognition with a single database, but larger repositories of
unconstrained data containing only one of these indicators are
becoming available, for example [28, 82]. This would allow to
separately address each task with bigger datasets, although it
would hinder another direction that we want to pursue, which
is joint‐estimation of both indicators. We foresee that im-
provements can be obtained by sharing weights between the
networks, since a single facial feature can carry information not
only about identity, but about different soft‐biometrics at the
same time. One plausible direction to overcome this would be
to train the networks on larger databases for each task, as done
by works that focus on gender [31] or age estimation [33]
separately, and then combine them together onto a database

TABLE 10 Detail of gender estimation results (columns 2–4 refer to
the cases with best overall accuracy in our experiments)

Class face Ocular Ocular L + R face [20]

Overall 85.3 76.6 78.9 87.71

Female 86.1 78.1 80.4 86.80

Male 84.1 74.7 77.1 88.69

TABLE 11 Detail of age estimation results (columns 2–4 refer to the
cases with best overall accuracy in our experiments). For each column, the
best accuracy is highlighted with a grey background, and the worst accuracy
is marked in bold

Class face Ocular Ocular L + R face [80] face [32]

Overall 53.8 45.9 48.8 50.7 70.96

0–2 76.2 57 47 69.9 98.9

4–6 63.2 24 64.4 57.3 79.7

8–13 52.3 60.5 49 55.2 75.2

15–20 36.2 29.7 23.4 23.9 68.1

25–32 64.1 62 68.6 61.3 47.3

38–43 43.6 19.4 35.2 29.3 67.5

48–53 30.4 32.7 16.8 14.6 41.7

60–99 49.3 39.8 27 35.7 79.8

ALONSO‐FERNANDEZ ET AL. - 577



labelled with several soft‐biometric indicators simultaneously.
Freezing initial layers after the networks have been pre‐trained
in a related task (such as face recognition) can be another
approach to counteract the lack of sufficient data in the target
database, as done by other studies as well [32]. Age estimation
using ocular data also deserves extra attention. The exact ac-
curacy is still low in comparison to gender estimation. With the
employed database, state‐of‐the‐art accuracy is 93.52%
(gender) versus 70.96% (age), see Table 9. In ocular works with
another databases (Tables 1 and 2), a gender accuracy of
90%–95% is common, while exact age estimation barely rea-
ches 60%. We expect to achieve improvements in this direction
with larger facial repositories [83].
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