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Abstract. Machine activity recognition is important for accurately esti-
mating machine productivity and machine maintenance needs. In this
paper, we present ongoing work on how to recognize activities of forklift
trucks from on-board data streaming on the controller area network. We
show that such recognition works across different sites. We first demon-
strate the baseline classification performance of a Random Forest that
uses 14 signals over 20 time steps, for a 280-dimensional input. Next, we
show how a deep neural network can learn low-dimensional representa-
tions that, with fine-tuning, achieve comparable accuracy. The proposed
representation achieves machine activity recognition. Also, it visualizes
the forklift operation over time and illustrates the relationships across
different activities.
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1 Introduction

In recent years, a field of study has emerged as Machine Activity Recognition
(MAR), i.e. the study of how to label machine activities from data streams
(video, audio, or other types of data). MAR enables monitoring machine pro-
ductivity, understanding customer needs better, and designing improved main-
tenance schemes. So far, work on MAR has almost exclusively been applied to
construction equipment. A recent overview of the field is provided by Sherafat et
al. [7], who categorize the approaches into kinematic methods, computer vision
based methods, and audio based methods. The first two are the most common
approaches. The approaches tend to be based on external sensors placed on (or
nearby) the machine for the sole purpose of activity recognition. It is rare to
use the streaming on-board data on the controller area network (CAN), which is
multidimensional and consist of control and sensor signals to and from different
parts of the equipment. We are only aware of some early works by Vachkov et
al. [8,9], who used CAN data and different variants of self-organizing maps for
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this. There have been important developments in the last decade, both regarding
the volume of on-board data and the capacity of machine learning algorithms.
Thus, it is worthwhile to explore how well MAR can be done using more recent
machine learning techniques and CAN data.

In this paper we present ongoing work on MAR for forklift trucks, a type of
equipment that is widely used in the industry, but rare in MAR research. Forklift
trucks are considered exceptionally challenging, even “unrecognizable”, due to
few “articulated moving parts” [7]. We show that the situation is not poor when
one uses multidimensional CAN data.

A contribution of this work concerns learning nonlinear representations from
unlabeled data. Representation learning [1] is a way to make use of large unla-
beled data sets to visualize relations, and improve classification performance.
This can lead to deep learning classifiers that significantly outperform shallow
classifiers. We have used autoencoders to learn the CAN data embedding, and
then fine-tune it with supervised learning, in order to visualize the forklift oper-
ations. We are not aware of any work, prior to our study, that has approached
this visualization question for MAR.

2 Definition of the Task

The task is to recognize the activities of forklift trucks. Forklift experts defined
expected actions and grouped them into six levels of detail. The top level includes
engine off and on. The next level contains 1) engine off, 2) engine on but fork-
lift idle, and 3) engine on and forklift working. This activity breakdown was
continued to level six. The complexity in the activities depend on the number
and order of signals, driver behavior, and time. The same activity can vary in
duration. The top activity levels can be recognized with rules and a single signal;
the actions in levels 4-6 are much more complex. The results in this paper are
reported for the fifth level, with five different activities, excluding engine off.

3 The Data

The forklift trucks used in this study were reach forklifts with 1.6-ton load capac-
ities and 10-meter maximum lift height. Data collection was made with a Vector
GL1000 compact Logger and signals from two CAN buses were saved. The orig-
inal frequency of the CAN bus data is 50 Hz, but the data was extracted with a
frequency of 10 Hz. Data were collected from two different warehouse sites, one
in Sweden and one in Norway. During the data collection at the Swedish site,
the operators’ hand actions were filmed for later activity labeling.

Two data sets were collected with the same driver at the Swedish site: one
with 58 min and one with 27 min. The long represented normal operation, includ-
ing picking up orders and waiting, whereas the short focused on load handling
operations. Another data set collected at the Norway site spanned two weeks of
normal operation, with different drivers. However, no labels could be created for
forklift activities, due to the lack of videos.
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Each second of the videos from the Swedish site was labeled manually by
an expert from watching the operators’ actions. The fifth level activity recog-
nition has five categories. The recognition of each activity was evaluated with
one-against-all, presenting data imbalance. In the 58-min data set, the class pro-
portions are 35.6%, 24.3%, 15.8%, 15.1%, and 9.1%, corresponding to the five
labels other, drive without load, take load, drive with load, and leave load. In the
27-min data set, the corresponding proportions are 2.5%, 31.1%, 21.8%, 23.1%,
and 21.6%.

The collected data contained more than 260 signals, of which 14 were selected
by the experts as especially relevant for recognizing the activities. These 14
signals were also available in the data from the Norwegian site. These 14 signals
contain information about the fork adjustment functions, the fork height, the
weight on the fork, the speed and the heading of the vehicle.

4 Methods

The goal is to recognize the activities from these 14 signals. Our idea is to
use time window snapshots by the size of two seconds to define the activities.
Two seconds correspond to 20 time samples, so the total size of each pattern
was 280 (14 signals x 20 time steps). The activity label for each pattern was
determined by the label for the last second in the time window snapshot. The
overlap between sliding windows is 50% (10 time steps). Random forests (RF)
[3] was applied as the baseline classifier model.

The choice of a two-second time window was made after plotting the data
with t-Distributed Stochastic Neighbor Embedding [5] with different time win-
dow lengths. Data corresponding to different activities became more separated
when increasing the window size, which is reasonable since data points should
become more and more unique as the time window is increased. However, there
is a trade-off where a large window can give more information about the corre-
sponding activity while can also increase the difficulty in finding the patterns of
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Fig. 1. Flow chart for forklift truck activity recognition.
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the data in the window, i.e., more than one activities can be captured in a single
window.

Figurel shows a flow chart of the method, divided into seven steps: (1)
training a baseline RF with the Sweden (labeled) data sets, (2) training an
autoencoder [4] with the Norway (unlabeled) data, (3) extracting the output
of the bottleneck layer of the trained autoencoder, this embedding is named
autoencoder embedding, (4) transforming the autoencoder into a discriminator
by removing the decoder and adding one layer as the output layer connected to
the bottleneck layer, (5) generating pseudo-labels on the Norway data by using
the baseline RF trained at step 1, (6) training the discriminator using the data
with pseudo-labels from step 5, (7) extracting the output of the last hidden layer
of the discriminator, which is named discriminator embedding.

In this case, overly optimistic values can be given by reporting the result
using, e.g., the area under the receiver-operating curve (AUC), or the accuracy.
We therefore report the recognition results using two measures that are more
suitable with imbalanced data: the balanced accuracy (BA) and the area under
the precision-recall curve (APRC) [6]. The BA is the average of the true pos-
itive rate (TPR) and the true negative rate (TNR). The precision-recall curve
describes the trade-off between precision and recall, which are measurements
focusing on the true positive (TP), hense it is more appropriate for imbalanced
data [2]. The APRC has similar characteristics as the AUC: it is a score across
different probability thresholds, and it needs to be compared with the lower
bound from a random classifier. For a classifier that makes random decisions, its
AUC score will be 0.5 while its APRC value will be the ratio of positive samples
over all samples. In the result section, for each activity, we report the APRC
value achieved with a random classifier as “Random APRC”.

5 Results

Throughout the experiments in this paper, the 27-min labeled data set was used
as a hold-out test set. The 58-min labeled data set was used for supervised
training. All hyper-parameter selection was done with 10-fold cross validation
on the training set. Additionally, for the results from deep neural networks, the
loss into training and validation was checked to confirm that overfitting did not
happen.

5.1 Baseline Classifier

The best RF model was selected by doing a randomized grid search on three
significant hyper-parameters. The final RF model was generated with 60 trees, a
maximum depth of 11, and maximum 2 features to consider while looking for the
best split. The baseline classifier’s results on the test set are shown in Table 1.
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Table 1. One-against-all recognition performance of baseline RF classifier (BA is Bal-
anced Accuracy, and APRC is Area under the Precision-Recall Curve). For comparison,
the performance of a random classifier is shown in the bottom row.

Measure Other Drive w/out load | Drive w load | Take load Leave load
BA 0.858 £ 0.022 | 0.811 £ 0.026 0.715 £ 0.026 | 0.684 4 0.042 | 0.601 + 0.078
APRC 0.661 £ 0.380 | 0.602 £ 0.156 0.535 £ 0.032 | 0.546 £ 0.036 | 0.636 £ 0.042
“Random” APRC | 0.025 0.311 0.218 0.231 0.216

5.2 Classifiers Trained from Unlabeled Data

The experiment processed to train classifiers from unlabeled data according to
Sect. 4. Autoencoders of different sizes (breadth and depth) were trained to
obtain a stable signal reconstruction performance. The results reported in this
paper use an encoder with the 280 dimensional input and three layers connecting
the input layer and the bottleneck layer, with 128, 64, and 32 units, respectively.
The decoder had a symmetric structure with three layers. The total autoencoder
architecture can be described as 280—128 —64—32— N —32—64—128—-280, where
N denotes the number of bottleneck units. The activation function in the bot-
tleneck layer is linear while the other layers have ReLu units. Each autoencoder
was trained with backpropagation and early stopping.

The first findings were that an autoencoder trained on the unlabeled data
set was efficient also for encoding the labeled data sets, and the reconstruction
of the signals improved as the number of bottleneck units increased, see the left
panel in Fig.2. This showed that data from one site could be used to learn a
representation applicable to other sites. It also showed that the data is so complex
that it requires a high-dimensional manifold to be represented accurately.
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Fig. 2. The left panel shows the reconstruction error (MSE) when changing the size
of the bottleneck layer, for all three data sets. The right panel shows how the recon-
struction error decreased when the amount of data used for training increased. In both
cases the autoencoders were trained only on the large unlabeled data set.



124 K. Chen et al.

Another finding was that having more data is helpful in learning better rep-
resentations for reconstructing the signal. The right panel in Fig.2 shows how
the reconstruction performance improved as adding the training set size.

Table 2. Balanced accuracy (BA) with different representations

Other

Drive w/out load

Drive w load

Take load

Leave load

Baseline (280D)

0.858 £ 0.022

0.811 + 0.026

0.715 £+ 0.026

0.684 £ 0.042

0.601 £+ 0.078

Autoencoder (3D)

0.722 + 0.286

0.684 £ 0.042

0.597 £ 0.044

0.624 + 0.030

0.609 + 0.022

Discriminator (3D)

0.848 + 0.024

0.818 £ 0.040

0.718 £ 0.022

0.689 + 0.016

0.615 £ 0.018

Table 3. Area under the precision-recall curve (APRC) with different representations

Other

Drive w/out load

Drive w load

Take load

Leave load

Baseline (280D)

0.661 + 0.380

0.602 £ 0.156

0.535 £+ 0.032

0.546 + 0.036

0.636 £+ 0.042

Autoencoder (3D)

0.125 £ 0.136

0.557 £ 0.070

0.390 £ 0.036

0.382 + 0.050

0.551 £ 0.042

Discriminator (3D)

0.256 £ 0.286

0.722 £ 0.054

0.507 £ 0.048

0.529 + 0.024

0.528 £ 0.044

Tables 2 and 3 summarize the recognition results on the test set, for the base-
line RF classifier with 280-dimensional input, and classifiers built using autoen-
coder and discriminator representations. We used three-dimensional representa-
tions in both cases (i.e. N = 3). However, when an RF classifier was constructed
using the learned autoencoder representation, its recognition performance was
worse than the one from the baseline RF model. Figure 3a shows the recognition
performance (BA) plotted versus the reconstruction error and there is very little
correlation (a negative correlation is expected). It shows that the most variance
preserving representation did not coincide with the most discriminative repre-
sentation. The results are concluded with that training a “better” autoencoder
did not produce a more discriminative representation for the activity recognition
task, indicating a misalignment of the two criteria.

In order to instead build a more discriminative representation, the autoen-
coder network was fine-tuned in a supervised manner with the pseudo-labeled
data. The decoder part of the autoencoder was removed and an additional output
layer was placed after the bottleneck layer (see Sect. 4). Since there are five target
activities, the structure of the classification network was 280—128 —64—32—3—5,
where the activation function in the output layer is softmax. After the training,
the 3-dimensional bottleneck before the output layer is extracted to be the dis-
criminator representation. Figure 3b is a visualization of the 3D-representation
applied to the 58-min labeled data set. In this space, different activities are bet-
ter separated from each other and it is possible to see the relationships between
neighbors activities.
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6 Conclusions

It was shown that streaming CAN data can be used to achieve machine activity
recognition for a forklift truck. It was also presented that forklift activities at
different sites are similar, i.e. autoencoders trained on one site data were also
good for encoding data from another site, but that several hours of activity data
are needed to build a good autoencoder for the signals. However, autoencoder
representations yielded poor activity recognition, and there is a weak connection
between reconstruction performance and recognition performance. It was shown
how discriminative encoders could be trained with pseudo-labeled data, making
it possible to construct a three-dimensional representation that achieved equal
recognition results to the 280-dimensional baseline. This representation allowed
a better visualization of the learned activities and their relationships.

A future work is to explore if a general supplementary criterion for repre-
sentation learning for MAR can be inferred from comparing the autoencoder
representation and the discriminative representation, avoiding the need for a
pseudo labeled data set.
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