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Abstract

Medical and technological advancement in the last century has led to the
unprecedented increase of the populace’s quality of life and lifespan. As a
result, an ever-increasing number of people live with chronic health conditions
that require long-term treatment, resulting in increased healthcare costs and
managerial burden to the healthcare provider. This increase in complexity can
lead to ineffective decision-making and reduce care quality for the individual
while increasing costs. One promising direction to tackle these issues is the
active involvement of the patient in managing their care. Particularly for chronic
diseases, where ongoing support is often required, patients must understand
their illness and be empowered to manage their care. With the advent of smart
devices such as smartphones, it is easier than ever to provide personalised
digital interventions to patients, help them manage their treatment in their
daily lives, and raise awareness about their illness. If such new approaches
are to succeed, scalability is necessary, and solutions are needed that can
act autonomously without costly human intervention. Furthermore, solutions
should exhibit adaptability to the changing circumstances of an individual
patient’s health, needs and goals. Through the ongoing digitisation of healthcare,
we are presented with the unique opportunity to develop cost-effective and
scalable solutions through Artificial Intelligence (AI).

This thesis presents work that we conducted as part of the project im-
proving Medication Adherence through Person-Centered Care and Adaptive
Interventions (iMedA) that aims to provide personalised adaptive interventions
to hypertensive patients, supporting them in managing their medication regi-
ment. The focus lies on inadequate medication adherence (MA), a pervasive
issue where patients do not take their medication as instructed by their physician.
The selection of individuals for intervention through secondary database analy-
sis on Electronic Health Records (EHRs) was a key challenge and is addressed
through in-depth analysis of common adherence measures, development of
prediction models for MA and discussions on limitations of such approaches
for analysing MA. Furthermore, providing personalised adaptive interventions
is framed in the contextual bandit setting and addresses the challenge of deliv-
ering relevant interventions in environments where contextual information is
significantly corrupted.

The contributions of the thesis can be summarised as follows: (1) High-
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lighting the issues encountered in measuring MA through secondary database
analysis and providing recommendations to address these issues, (2) Investi-
gating machine learning models developed using EHRs for MA prediction and
extraction of common refilling patterns through EHRs and (3) formal problem
definition for a novel contextual bandit setting with context uncertainty com-
monly encountered in Mobile Health and development of an algorithm designed
for such environments.
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1. INTRODUCTION

The most merciful thing in the world, I think, is the inability of the human
mind to correlate all its contents.

— H.P. Lovecraft [3]

Significant improvements in healthcare over the last decades resulted in
an increase in lifespan, and with it, an increase in the number of people that
live with chronic conditions [4]. This development has lead to the allocation of
a significant portion of healthcare resources for the treatment and prevention
of chronic illnesses, such as hypertension, stroke, coronary artery disease and
heart failure[5]. While knowledge in effective treatment of chronic conditions
is ever increasing, a promising, and arguably necessary, approach to improve
patient well-being and reduce cost is through self-management, empowering
patients to manage their illness by educating and teaching individuals how
to identify and solve problems related to their condition [4]. The increasing
pervasiveness of digital technologies in modern societies provides fertile ground
for the successful growth of new approaches that involve the individual patient
in a more holistic healthcare framework towards person-centred-care (PCC).
One such approach focuses on using the advances in mobile phone technology
to deliver tailored interventions that aim to educate, remind or help patients
change their habits and attitudes towards their illness to improve outcomes.

Through the 20th century, the term "Person-Centered Care" has increased in
prominence as the de facto mantra of modern healthcare internationally, promis-
ing improved outcomes for patients and an increase in care satisfaction [6]. PCC
has been described as "understanding the patient as a unique human being" [7]
and doing away with the notion that the patient is a passive receiver of care with
the sole purpose of medicine being in the diagnosis, treatment and prevention of
individual diseases [8]. Through a growing body of evidence, it became clearer
for healthcare providers, researchers and policymakers that the premise of PCC
constitutes a cultural shift towards the full integration of patients into medical
treatment, focusing on their unique needs, goals and experiences [9].

PCC has been linked to success in improving care. It has been found
that family physicians and general internists that adopt a practice more along
PCC resulted in lower healthcare utilization [10]. The implementation of PCC
practices is linked to an increase in quality of primary care [11] and adherence to
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and believes about medication has been significantly associated with PCC [12].
This thesis focuses on TeleHealth applications and Mobile Health (mHealth)

in particular. The WHO defines TeleHealth as “[The] delivery of healthcare
services, where patients and providers are separated by distance. TeleHealth
uses information and communication technologies for the exchange of infor-
mation for the diagnosis and treatment of diseases and injuries, research and
evaluation, and for the continuing education of health professionals”. MHealth
focuses on the delivery of healthcare services and reminders through mobile
phone applications and seen a significant increase of interest in the past decade,
allowing the easy monitoring and exchange of individual health information
at any time and anywhere. Because of the popularity of health applications,
researchers have focused their efforts on using this new technology to further
aid the vision of PCC, integrating information of the patient’s life outside the
clinical setting. This holistic view of healthcare opens many new opportunities
to provide patients with needed support throughout their daily lives as well
as reduce costly human involvement using Artificial Intelligence (AI). Some
examples of mHealth applications in healthcare are: Monitoring patients health
status [13] allowing early detection of patient deterioration [14]; Wellness ap-
plications supporting patients in leading a healthier lifestyle [15]; Applications
that deliver behaviour modifications to help patients change habits to improve
health outcomes [16] or applications that support patients in staying adherent to
their treatment plan[17]. For a comprehensive survey on the topic of mHealth
applications, we refer to [18].

While the idea is promising, the actual implementation of effective mobile
interventions is challenging. From a patients perspective, intervention fatigue
and intervention engagement are important processes for intervention adher-
ence and retention [19]. Intervention fatigue is described as the emotional or
cognitive overload or burden associated with treatment engagement. Patients
feeling overwhelmed with the constant effort of managing their disease and
subsequently become nonadherent to their treatment. Intervention engagement
is defined as a "multifaceted state of motivational commitment or investment
in the client role over the treatment process" [20]. Both mechanisms play an
important role in adherence to interventions and point towards the need to
provide individualized support to which the patient is receptive given internal
(e.g., current emotional state) and context-specific (e.g., location, time-of-day)
factors [19; 21].

In this thesis, we examine the phenomenon of medication nonadherence.
Medication nonadherence, commonly defined as the "failure of patients to take
their medication as prescribed", is a pervasive issue and significant public health
concern, contributing to an increase in levels of morbidity and mortality [22].
It is estimated that the rate of medication nonadherence among people with
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chronic diseases lies between 30-50%, increasing the overall cost of care due to
avoidable hospitalizations [23]. Through targeted digital interventions and re-
minders, mHealth applications provide an effective pathway to support patients
with their daily medication regiment in a more personalized manner. Many
factors are important for successful interventions in mHealth. Many of the
factors pertain to organization of the healthcare system, considering the success
or failure of interventions depending on costs, system architecture, policies,
standardization, reliability, legal aspects and many more. Patient-related factors
include: usability, education, patient-provider relationship, user involvement
and adherence to treatment [24]. In this work, we focus on the problem of
improving a patients adherence to treatment through the use of personalized
digital interventions, facilitating improved adherence targeting factors asso-
ciated with nonadherence, such as: Providing education content, improving
self-awareness of the patient about their disease, providing help for more effec-
tive self-management, and reducing forgetfulness through reminders [25].

For digital interventions to be most effective, it is important to identify pa-
tients in need of support technologies early during treatment. A key challenge is
to estimate the level of adherence in an accurate and cost-effective manner. We
aim to investigate approximate measures using secondary databases, prescrip-
tion and pharmacy records, that promise the valid and cost-effective analysis of
adherence to medication.

From the technological perspective, systems developed for automatic inter-
vention support need to be robust to issues idiosyncratic to both user and mobile
technology. Interest in Reinforcement Learning (RL) as a framework has been
growing in recent years, showing great promise for applications in mHealth.
Wide scale adoption of RL is stunted due to the sensitivity of contemporary
algorithms to assumption-mismatch between environments the algorithms are
designed for and the environment of mHealth. For example, when considering
survey or self-report data for decision-making, systems have to deal with com-
pleteness of the records driven by the engagement level of the users[26]. Using
contextual information through mobile phone sensors might be incomplete due
to an unstable wireless connection. Sensory information might also be noisy,
too costly to acquire or otherwise unavailable due to privacy concerns [27].
These issues can significantly delay learning such that a good intervention
strategy might never be learned in a time where it matters. This highlights the
need for algorithms and methods that can act under the information uncertainty
commonly encountered in the domain of mHealth. We aim to define and investi-
gate a formal problem setting for RL that captures this information uncertainty.
We investigate the effect of corrupted contextual information that prohibits the
effective selection of relevant interventions and how to deal with this problem
for more effective learning.
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1.1 Research Questions

As part of the improving Medication Adherence through Person-Centered
Care and Adaptive Interventions (iMedA) project, there were several research
questions that were of interest to the project. Furthermore, we investigate
questions that would contribute to the larger picture of the Doctoral thesis,
particularly regarding RL in mHealth. The following research questions are
addressed:

• RI: How are common measures of medication refill adherence af-
fected by pitfalls related to medication adherence approximation
through secondary database analysis and how can they be reme-
died?

Before any tailored interventions can be provided to patients, it is neces-
sary that individuals needing treatment support are identified in a timely
manner, since for many cardiovascular diseases, timeliness and effec-
tiveness of pharmacological treatment are tightly linked, especially for
secondary or tertiary prevention [28]. Current approaches aim to measure
the level of Medication Adherence (MA) over the course of treatment and
provide interventions as nonadherence is detected. The key challenges
lie in the accurate and cost-effective measurement of adherence. Many
measures of different types have been developed over the years, here we
elaborate some of them.

The most accurate measurement of medication adherence is through
the measurement of metabolite concentration of the drug in body fluids.
While accurate, this method is not cost-effective and places a high burden
on patients. Recent developments of socalled “digital pills”, indigestible
sensors that allow monitoring of medication consumption, might provide
a less invasive alternative, but may need more wide scale adoption and
acceptance from care-providers and patients [29]. Other approaches that
are more economic, but consequently less objective, include clinician-
patient interviews and self-report through patient-kept diaries [30]. Given
that patient might lie about their medication intake or change medication-
taking behaviour due to white-coat adherence [31], these measures are
potentially misleading and might not accurately reflect real medication-
taking patterns. New key technologies are electronic health records and
pharmacy dispensation databases, which contain records on the prescrip-
tions and medication pickups. This has promoted the development of
indirect measures to approximate medication adherence through so-called
medication refill adherence. This data allows valid and cost-effective
analysis of refill adherence patterns [32; 33], with the caveat that actual
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medication consumption remains unknown, limiting the usefulness for
MA estimation. Nevertheless, primary nonadherence to medication, that
is, patients that do not fill their prescription, is readily observable given
the data source is complete, and appropriate interventions can be provided
earlier when detected.

From the data analysis perspective, the measurement of refill adherence
using EHRs and pharmacy records is prone to pitfalls that would affect
the pool of candidates for intervention significantly [34]. Pitfalls include
differences in the definition of medication adherence [35; 36] and refill
adherence measures [37; 38]; Handling missing, incorrect or duplicate
records [39] and linkage of different data sources [34; 40] as well as
data selection for analysis [41]. While efforts have been undertaken to
alleviate problems associated with using real-world databases for adher-
ence measurement [37; 38; 42–44], in-depth analysis on the underlying
quality of the data and practical realities of real-world databases on how
they affect refill adherence estimations is still lacking. Given that future
studies may be driven by adherence estimates using EHR databases, it
is vital to investigate how data related and measure related issues affect
medication adherence approximation and how to alleviate them.

• RII What is the probability of medication adherence given the avail-
able data at prescription time?

Interesting from a clinical perspective is the prediction of adherence to
medication, i.e., allowing the care provider to estimate the probability of
nonadherence to medication in the future. Training prediction models
and analysing adherence patterns in EHRs and pharmacy records, would
provide physicians with the possibility to intervene early.

While adherence to treatment is partially determined by individual fac-
tors that are not contained in administrative databases, there is growing
interest in finding out to what extent clinical predictors contained in
EHRs might allow the prediction of adherence. Previous studies utilising
sociodemographic factors, clinical factors, or purchasing information had
only marginal success in predicting long term adherence to medication
[43; 45–47]. While these efforts did not result in accurate prediction
models, they point out the importance of analysing patients’ refilling be-
haviours and patterns of healthcare utilization. Given the comprehensive
EHR and pharmacies records available to us, we identified a research gap
concerning the predictability of adherence using EHRs, focusing specifi-
cally on healthcare utilisation factors and analysing temporal patterns of
refill medication adherence.
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• RIII: How can we provide adaptive and personalized intervention
in mHealth using reinforcement learning?

Reinforcement learning is a mature and powerful framework for sequen-
tial decision making, providing an ideal fit for mHealth application due to
its ability to learn intervention strategies that are individually tailored to
patients. Furthermore, the capability of RL methods of lifelong learning
equips autonomous agents with the ability to quickly adapt to changing
circumstances of the patient, promising higher patient engagement and
better health outcomes through more relevant interventions.

While promising, there are several challenges in mHealth that make
the straightforward application of contemporary RL-algorithms difficult.
Some of the challenges include the requirement of a good initial policy
avoiding too frequent or irrelevant interventions; assessing the usefulness
of features for decision-making; robustness to failure of algorithmic
assumptions and dealing with noisy or missing data [27]. In this thesis,
we address the problem of missing and noisy data related to mHealth
applications in the framework of RL. The research conducted in the thesis
addressing this research question has just started and provides the basis
for future work.

1.2 Contributions

In the following, we list the individual contributions of this thesis towards the
project work and future work with the doctoral thesis:

• We have shown, through extensive comparative experimentation, how
data quality influences refill adherence estimates and provided recom-
mendations on how to remedy data quality issues (Paper I).

• We have demonstrated that minor variations in how patients pick up
their medication can significantly influence refill adherence estimates and
shown what common measures of adherence are particularly susceptible
estimation error (Paper I).

• We have shown that including historical information of past levels of
adherence improves the performance of MA prediction models for a
variety of practical scenarios (Paper II).

• We show that while predictive performance is high in the context of
selecting patients for intervention, using EHR and dispensation records
for refill adherence prediction introduces a data bias towards patients
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with high healthcare utilisation. Choosing patients for intervention based
on prediction models that use these data sources is potentially unreliable
(Paper II).

• We extracted common longitudinal medication pickup patterns through
cluster analysis. Furthermore, we cross-correlated these patterns using
simple simulation models of mediation consumption. We show that sev-
eral different consumption patterns can result in similar pickup patterns,
which can be potentially misleading when determining the necessity and
type of interventions (Paper II).

• We formulate a new problem setting for mHealth in a RL-framework,
exhibiting action order that can be exploited in case of significant context
corruption (Paper III).

• We develop a meta-algorithm for this setting that shows superior empiri-
cal performance compared to state-of-the-art algorithms (Paper III).

1.3 Contribution to the Doctoral Thesis

The overall theme of the doctoral thesis is framed from the perspective of
tackling the issue of providing personalised adaptive interventions in the domain
of mHealth. The thesis should contribute to both knowledge and technical
solutions in the form of data analysis, novel algorithms and methods. Focus is
placed on the problem of providing these interventions under domain-specific
constraints that need special consideration when developing such solutions.
We argue that the Reinforcement Learning (RL) framework in AI exhibits a
great fit for sequential decision making problems and promises to deliver state-
of-the-art solutions in optimal decision-making for mHealth. While powerful,
contemporary algorithmic solutions in RL face a plethora of issues that make
their practical implementation often difficult. Recently, four major types of
challenges have been identified [48]: (C1) Long-term influence of actions on
patient behaviour, (C2) fast learning in noisy contexts, (C3) accommodation
of model misspecification and non-stationary and (C4) learning policies that
allow offline evaluation. While work will be carried out addressing all these
challenges, efforts in the near feature will be directed towards addressing
challenges C2-C4.

The licentiate contributes to the doctoral thesis in several ways. The work
was carried out in the context of the project iMedA. As such, a significant
portion of time as been allotted to the initial phases of the project, explor-
ing and analysing the problem of MA from the clinical perspective and MA
measurement using EHRs. We explored the feasibility of using secondary
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database analysis to understand what clinical and healthcare utilisation factors
are indicative and predictive of patients that are nonadherent or may become
nonadherent in the future. The results of the initial work were used to select
patients for the pilot and large-scale intervention study of the project and con-
tributes knowledge and recommendations for the use of comprehensive EHRs
for predictive modelling and measurement of MA. The results of this work are
mainly reflected in paper I and paper II. Furthermore, the licentiate provides
some initial work on addressing challenges C2 and C3 in RL for mHealth,
through the development a meta-algorithm in paper III. Due to the COVID-19
pandemic, experimental validation of our proposed algorithm on real-world
mHealth data was significantly delayed and could not be included in this thesis.

1.4 Ethical Approval

All studies using patient data from electronic health records had approval
from the Ethics Committee in Lund (Dnr. 2018/294). Prediction studies and
adherence analysis were carried out on data between 2012-2019 obtained from
the Regional Healthcare Information Platform [49]. Consent from individual
patients was obtained through opt-out, that is, an opportunity was given for
patients request removal of their data from the analysis.

1.5 Disposition

The remainder of this thesis is organized as follows. Given the strong connec-
tion with the iMeda project, this thesis is divided into three parts. Part one,
outlined in chapter 2, discusses the problems laid out in the research question
RI, focusing on measurement using EHRs and pharmacy records of medication
adherence. Part two, chapter 3, addresses research question RII and discusses
predictive modelling in EHRs in general and for medication adherence in partic-
ular, as well as illustrates the discovery and simulation of longitudinal adherence
patterns. The work presented in these two chapters has been the result of the
initial phases of the iMedA project. Part three, outlined in chapter 4, addresses
the research question RIII, discussing the issues of sequential decision making
in mHealth setting and presents the developed solutions for addressing RL
challenges C2 and C3. The work of the third part coincides with the final stages
of the project that aims to deploy a solution to provide adaptive personalized
interventions. The summary of the papers is presented in chapter 5. Finally,
chapter 6 draws conclusions, followed by the discussion of ongoing and future
research directions.
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2. MEDICATION ADHERENCE
MEASUREMENT IN EHRs

Medication adherence is a complex multi-dimensional phenomenon that is
influenced by a multitude of societal, health system and personal factors, of-
ten unique to the individual circumstances of the patient. The WHO defines
adherence as the interplay between five different factor or dimensions of ad-
herence: Health system / healthcare team factors, social / economic factors,
therapy-related factors, patient-related factors and condition-related factors.
The complex problem of MA is not amendable to "one-size-fits-all" solutions
and requires a targeted, individual approach taking the profile of the patients
along these five dimensions into account when creating the optimal intervention
or treatment plan [50].

Significant efforts have been undertaken to develop interventions targeted
at nonadherent patients to support and improve outcomes [51]. The challenge
is to identify patients at risk of nonadherence as early as possible to maximize
interventions’ effectiveness. For many cardiovascular diseases, pharmacolog-
ical treatment’s timeliness and effectiveness are tightly linked, especially for
secondary or tertiary prevention [28]. The cost-effective and less intrusive
measurement of MA remains a key challenge. This thesis investigates indirect
measures that approximate medication adherence through medication refill
adherence using proxy information such as pharmacy dispensation data. This
proxy information provides a low cost, low burden solution, with the caveat that
actual medication consumption remains unknown [32; 33]. Many medication
refill adherence measures, henceforth called refill adherence, have been devel-
oped, with the Medication Possession Ratio (MPR) and Proportion of Days
Covered (PDC) being the most popular ones.

MPR is one of the most commonly used adherence measures. MPR is
simply computed as the ratio between the number of dispensed pills over the
total number of pills to be dispensed in measurement window:

MPR =
# dispensed pills

# total pills
(2.1)

The MPR belongs to the Continuous Measures of medication Acquisition
(CMA), since the timeliness of dispensations are not considered, only the total
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dispensed supply.
The PDC measure is computed as the ratio of the number of days theoreti-

cally covered by medication over the total number of days in the measurement
window. A common definition is “percentage of days covered by medica-
tion” [52; 53]:

PDC = 1− #gap days
measure window

(2.2)

Where #gaps days refers to days without medication and measure window
is the number of days over which MA is measured.

The PDC measure belongs to the Continuous Measures of medication Gaps
(CMG). CMG measures take potential gaps in medication coverage into account
and therefore consider the timeliness of medication dispensations.

From the data analysis perspective, evaluation of refill adherence using ad-
ministrative databases is prone to methodological pitfalls, affecting the resulting
adherence values significantly enough to warrant special consideration [34].
Through our studies, we have identified several data and measure-related pitfalls
that are of interest. Before discussing the pitfalls in more detail, we first define
the adherence measures in the family of CMA and CMG.

Authors in [42] defined variations of CMA and CMG, denoted as CMA1-8.
The first four CMA measures do not consider supply gaps and operate on
the dispensed supply only being most similar to the MPR (or “MPR-like”
measures). They do not explicitly include oversupply in their definitions, unlike
the definitions in this thesis. The last four CMAs (5-8) belong to the group
that compute supply gaps in the measurement window, constituting variations
of the PDC measure (or “PDC-like” measures) [43]. Some of those measures
consider oversupply in their definition, although it is entirely possible to include
oversupply calculations for all measures. Oversupply refers to the amount of
medication supply available at the beginning of the prescriptions, which can be
an essential factor for accurately estimating refill adherence. Patients may delay
their pickups if supply is available and would be falsely considered nonadherent
if oversupply is omitted.

2.1 Medication Adherence Measures

Through work conducted in Paper I, we developed alternative definitions of
the CMA1-8 measures previously defined that account for oversupply. Before
listing the measures, we define different sets of data required for computation.
We define the adherence measures on a per-prescription basis, that is, adherence
is measured for single prescriptions. The following quantities are required:
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• Prescribed daily dose z in terms of the number of pills per day.

• A set of dispensation dates T =
{

t1, t2, . . . , tN
}

.

• Dispensation quantities Q = {q0,q1,q2, . . . ,qN}. Each dispensation date
in T has a corresponding dispensation quantity in Q. q0 is the supply
from a previous prescription available at the start of the measurement
window.

• s and e are the start date and the end date of a prescription, respectively.

Additionally, we define important quantities that are relevant for CMG mea-
sures. the initiation gap, is the time interval (period) g = t1− s, between the
prescription start date s and first dispensation t1. Correspondingly, the terminal
gap is the time interval h = e− tN , between the last dispensation tN and pre-
scription end date e. With these two gaps defined, we define the supply gaps in
the initiation gap

dQg = max
(

g− q0

z
,0
)
, (2.3)

and terminal gap

dQh = max
(

h− qN +dqN−1

z
,0
)
, (2.4)

respectively. The quantity dqN−1 refers to oversupply accumulated before the
last dispensation in set Q. dq measures “stockpiling” where patients pickup
medication before exhausting their available supply. It is computed recur-
sively as: dqn = dqn−1 +max

[
qn−1−

(
tn− tn−1

)
· z,0

]
,n > 1. Note that at

t1: dq0 = q0, i.e., the oversupply available at the first dispensation. Figure
2.1 shows an example dispensation pattern illustrating the different gaps and
periods.

With the important quantities defined, we present the developed operational
definitions of the measures investigated. CMA1 is defined as:

CMA1 =

N−1

∑
n=1

qn
z + q0

z

max
(
tN− t1,1

) .
Zero or negative measurement windows in the denominator are avoided

through the max operator. At least two dispensations are required for computa-
tion and the supply of the last dispensation is ignored, since it lies outside the
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Figure 2.1: Measurement window and gaps for an example dispensation pattern.
From [1]

measurement window.
CMA2 is defined as:

CMA2 =

N

∑
n=1

qn
z + q0

z

max
(
e− t1,1

) .
CMA2 measures adherence between the first dispensation and the end of the
prescription period e, including all dispensations. CMA3 and CMA4 are defined
as: CMA3 = min

(
CMA1,1

)
and CMA4 = min

(
CMA2,1

)
. Both CMA3 and

CMA4 cap values at 100% and are otherwise computed like CMA1 and CMA2,
respectively.
CMA5 is defined as:

CMA5 = 1−

N−1

∑
n=1

max
[(

tn+1− tn
)
− qn +dqn

z
,0
]

max
(
tN− t1,1

) , (2.5)

The max operator avoids “negative-gaps” which would compensate earlier gaps
retroactively. Like CMA1, this measure cannot be computed with less than two
dispensations. Going forward, we refer to the numerator of equation (2.5) as

δq =
N−1

∑
n=1

max
[(

tn+1− tn
)
− qn +dqn

z
,0
]
,

which is computed the same way for the following measures.
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CMA6 is defined as:

CMA6 = 1−
dQh +δq

max
(
e− t1,1

)
CMA6 includes the terminal gap, counting covered days from first dispensation
t1 to the prescription end date e.
CMA7 is defined as:

CMA7 = 1−
dQg +dQh +δq

e− s
.

The measurement window for CMA7 coincides with the prescription period,
between s and e. Note that here dq0 (see equation (2.5)) is defined as dq0 =
max

[
q0−g · z,0

]
, i.e., the supply carried over into the first dispensation is the

oversupply minus the supply consumed in the initiation gap.
CMA8 is defined as:

CMA8 = 1−
dQg +dQh +δq

max
(
e− s∗,1

) .

Like CMA7, CMA8 counts covered days between s and e. Additionally, CMA8
introduces a “lag-period” equal to q0/z, postponing the measurement window
from s to s∗ = s+q0/z.

The original definition by authors in [42] excludes oversupply from the
nominator. The definition provided here automatically exclude oversupply since
accruing supply-gaps before s∗ is not possible as the oversupply is exhausted at
this point and cannot affect computations.

2.2 Measure-Related Pitfalls

In this section, we discuss the findings of the studies conducted in Paper I. We
consider measure-related pitfalls that can significantly affect how one might
interpret the level of adherence and select patients for intervention.

Inconsistent operational definitions As a natural consequence of needing
ways to quantify MA, many measures have been developed over the years.
These measures are often named similarly, leading to confusion whenever
MA values need to be compared between studies. The commonly used MPR
measure has been defined in four different ways [37] previously. Similarly,
the PDC measure has seen some alternative definitions as well, for example,
as “MPR but capped at 100%” [33]. This deviates significantly from what is
commonly understood by PDC. Capping MPR at 100% ignores the fact that
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significant gaps between medication pickups will not be detectable since MPR
only considers accumulated supply. Another definitions that are similar to
the definition of PDC is “MPR but surplus medication at the end of the study
period excluded” [37]. While unconventional, this definition is a somewhat
simpler reformulation of the computational rule for PDC. Avoiding the mixture
of nomenclature for common definition such as MPR and PDC is preferable
since misinterpretation can significantly impact resulting adherence values.

Inclusion or exclusion of supply available from previous prescriptions For
prospective MA studies, it is known who does and does not have an available
supply initially. When using secondary database analysis, the factor of oversup-
ply plays a significant role in measuring refill adherence accurately. In general,
including oversupply may mask nonadherence patterns in MPR-like measures
that do not consider gaps in medication supply. In this case, oversupply may
compensate gaps that would have otherwise been detected. On the other hand,
excluding oversupply may result in lower refill adherence estimates when pa-
tients delay their next refill due to adequate available supply. In any case, for
retrospective database analysis and long-term adherence monitoring, exclusion
of oversupply can skew refill adherence values, not only on an individual level
but the effects may be significant enough to show reduced adherence on a
population level. Particularly when considering patients with chronic illnesses,
oversupply might likely be available. Undue targeting of such patients for inter-
vention may not only be inefficient from a resource management perspective,
but it might also increase patient dissatisfaction and negatively influence the
relationship between care-provider and patient.

Measurement windows and gaps Similar to oversupply calculations, for
prospective studies that measure MA, the window of observation can be defined
beforehand and is usually fixed for all patients. In secondary database analysis,
the observation window might be defined depending on the available data
source. For instance, the level of adherence can be measured between the first
and last dispensation if other information about the prescription is not available,
commonly encountered when dispensation records are the only available source.
Inadequate refill adherence in the initiation gap is necessarily ignored in this
case and may lead to overestimation of refill adherence.

Similarly, ignoring the terminal gap exacerbates overestimation further [42].
If prescription records are available, the measurement window might often be
defined as the prescription period. One can choose to include or exclude the
initiation and terminal gap from refill adherence computation.
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Truncation caused by the operationalisation of adherence measures Re-
fill adherence measures that define their measurement window through dis-
pensations are particularly prone to exclude patients, skewing refill adherence
estimates for the whole population to higher values. For instance, using the
definition of CMA1, refill adherence for patients who have less than two dis-
pensations cannot be computed for this measure as the measurement window
is undefined. Naturally, it is always possible to define a default value of 0
for patients with no dispensations, but the issue remains for patients with one
dispensation. Furthermore, special cases for computation might also be neces-
sary for patients with enough oversupply to cover the whole prescription, not
needing to dispense medication at all. The number of patients excluded from
the analysis due to the sub-optimal choice of measure can be quite significant
and warrants careful consideration.

Accumulated supply vs medication supply gaps There is a multitude of
ways to compute refill adherence by processing dispensation information con-
tained in pharmacy records. As mentioned in the previous section, measures
have been developed that process dispensations in two conceptually different
ways. The first approach is operationalised in MPR-like measures, where dis-
pensed supply is accumulated and divided by the total supply. These types
of measures are particularly susceptible to overestimation of adherence. If
the measurement window is defined by dispensations, patients who refill their
prescription early, that is, the supply from the previous dispensation is not yet
exhausted, the measurement window might be significantly shorter than the
supply would theoretically last, inflating adherence values. A similar scenario
might occur for patients with late first dispensations and subsequent early follow
up dispensations. For a significant portion of the prescription, the patient has
no supply available, but this is not reflected by the measure, resulting in an
overestimation of adherence.

PDC-like measures that defined their measurement window through dis-
pensations suffer from the same adherence overestimation issues as MPR-like
measures but skew the results much less since adherence values cannot exceed
100%.

2.3 Common Data Related Pitfalls

In this section, we discuss our findings regarding data related pitfalls often
encountered in real-world databases where entries are missing, duplicated or
implausible that must be corrected before refill adherence can be properly
computed. Simple approaches, such as removing missing or incomplete data,
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might be reasonable if enough data is available. Specific to adherence analysis,
merely removing entries is incorrect. Patients with incomplete records should be
removed from the analysis entirely. Otherwise, underestimation of adherence
for these individuals may occur to a significant degree [54]. Furthermore,
imputation of missing or incorrect values is not as straight forward as using
the mean or most common value. The assumption of data being missing at
random or missing at completely random is often not satisfied in modern EHR
databases, that is, missing values might be a result of care provider policy or
practical operations.

Preparing the data for accurate refill adherence computation is the goal.
Therefore in paper I, we focused on data that is relevant for adherence com-
putation. We concentrate on Prescribed daily dose: The number of pills to
be taken each day. Dispensed pills: The number of pills dispensed at each
dispensation and Prescription period: The period the medication should be
taken for. While dispensed pills are relevant for computation, this quantity is
often recorded in an automatic fashion through modern pharmacy dispensation
logging systems. Therefore, we mainly focus on data correction and imputation
concerning the prescription period and prescribed daily dose.

Prescribed daily dose All adherence measures require some way of estimat-
ing the supply available to the patient, be this through the number of pills or
indirectly through the number of days the supply would last. In either case,
the prescribed daily dose plays an important role, where missing or incorrect
values can significantly affect resulting adherence values since values are usu-
ally in the single digits (often 1-3 pills a day). Knowing this can help create
simple heuristics to impute missing and find incorrect prescribed daily doses
by observing the number of dispensed pills throughout the prescription. For
instance, some patients receive more supply per dispensation than is indicated
by the prescribed daily dose, consequently inflating adherence estimates. This
observation allows for the adjustment of the prescribed daily dose.

Prescription periods A common occurrence is missing prescription end
dates in databases. End dates are missing until a new prescription is issued,
resulting in missing entries if the prescription has not been renewed or replaced.
Using the average or most common prescription length would be the wrong
approach in this case, and the imputation strategy will affect measures differ-
ently, described next. Measures that define their measurement window through
dispensations are not affected by missing end dates, in contrast to measures
considering adherence in the prescription period, defined by prescription start
and end dates. Depending on when prescription end dates are missing, i.e., for
the most recent prescription or an older prescription, the strategy of imputation
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might change significantly. For example, the healthcare system policies in
Halland, Sweden restrict the maximum validity of a prescription to one year,
allowing the imputation of missing end dates for the most recent prescription in
many cases.

Exceptions need to be made in cases where treatment is discontinued earlier,
but it might be impossible to provide an accurate end date without additional
information. The start date of a new prescription might be a natural end date
for older prescriptions. While convenient and straightforward, the application
of these heuristics is not as simple in some cases, particularly for complicated
prescription schemes with multiple medications and changing medication plans
during treatment, e.g., when patients experience adverse reactions to specific
drugs. Extensive domain knowledge might be required to identify what combi-
nation of older prescription and new prescription constitute the current treatment
plan allowing the adjustment of prescription periods.

Duplications Given that data entry in EHRs, and particularly for prescription
records, is done mostly in a manual fashion, wrong inputs might not be deleted
or corrected right away, leaving behind a duplicated entry [42]. Naturally,
dispensations need to be assigned uniquely to a prescription, causing the patient
to be nonadherent to duplicate prescriptions since these do not “receive” a
dispensation. The effect of duplications on adherence estimates may manifest
differently depending on the measure employed and computation strategy used
for multi-drug therapy. Measures defining the measurement window through
dispensations are not affected by duplication since they are not computable
without provisions to handle such cases. Duplications can lead to significant
downward bias when using other measures, particularly in the case of adherence
estimation to multi-drug therapy. In most cases, the identification of duplicate
records is relatively straightforward since multiple entries of the same pre-
scribed drug on the same day are easily recognisable and can be excluded from
consideration.
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3. PREDICTIVE MODELING
AND LONGITUDINAL
PATTERN EXTRACTION IN
EHRs

This chapter shows the process of using administrative databases in healthcare
for prediction and pattern mining. As the focus of this thesis is medication
adherence through the iMedA project, we describe and exemplify the concepts
on the analysis of MA. Nonetheless, the concepts are general enough to be valid
in other contexts surrounding data analysis using EHRs.

3.1 Predictive Modelling

EHRs are inherently retrospective data sources, that is, they contain data col-
lected in the contexts of routine clinical operations and do not contain data
from controlled clinical trials. As such, they are primarily used in retrospective
studies to analyse and predict patient outcomes. In general, a prediction model
has three dimensions that need to be addressed by the researcher:

• The outcome data or dependent variable: the outcome that is to be
predicted, for example, refill adherence over one year.

• The covariates or predictor data: variables or features that are associate
with the outcome in some statistical and sometimes causal manner.

• The statistical model: a mathematical function that maps features to the
outcome of interest by representing the relationship between them. The
mapping is learned directly from data, as is the case with many machine
learning algorithms, for example, Deep Neural Networks, Decision Trees,
Logistic Regression, etc.

Outcome Variable The outcome variable is directly extracted or purpose-
fully constructed from EHRs. Direct extraction is done through conditional
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statements, for example, if primary medication adherence1 is the outcome of
interest, we might define the target variable in the following way if prescrip-
tion date - dispensation date < 30 days; target = 1 (adherent) else target=0.
Some outcomes are not contained natively in EHRs and thus are not directly
accessible through conditional statements but may require post-processing af-
ter extraction. For instance, refill medication adherence might be defined on
individual prescriptions with varying prescription lengths. In this thesis, we
define the outcome variable through external measures of adherence, mainly
those described in chapter 2.

Features EHRs are usually comprised of information pertaining to all care
visits of a patient through time. For each visit, they contain clinical and de-
mographic information. For example, a patient might receive a prescription at
a primary care unit. The visit would contain patient and care provider demo-
graphic information such as patient’s age, gender, primary care unit, prescriber’s
age and more. The clinical information for a visit is represented in the form
of codes representing different clinical concepts such as diagnosis, performed
procedures, prescribed medications, lab test and vital signs. Furthermore, each
visit entry may contain examination information as free text input.

While the visit data can be used directly, the resulting dimensionality
of the data representation is usually very high, and thus result in inefficient
learning of statistical models due to the curse of dimensionality [55]. One
method for dealing with high dimensional data from EHRs relies on computing
features using expert knowledge to summarise or condense the high dimensional
representation in human-understandable concepts. These features are then used
as input to ML models to predict the desired outcome. Another approach
uses the power of modern neural networks to learn so-called machine derived
features [56]. While appealing from the perspective of avoiding time-consuming
feature-engineering, these representations are often difficult to interpret by a
human. In this thesis, we mainly consider human-derived features. We leave
the investigation of learned representations to future work.

3.2 Refill Adherence Prediction

Part of the purpose of the study conducted in Paper II was to investigate the
predictability of adherence as measured by the PDC (CMA7) via machine
learning algorithms. Patients that have a high probability of nonadherence
could be considered for early intervention to mitigate the potential impact of
long term effects of uncontrolled hypertension [57; 58].

1medication is picked up at the pharmacy within a set time window
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The cohort consists of patients between 18 and 90 years of age with an
essential hypertension diagnosis (ICD10 code i10-). There are a variety of
clinically relevant outcomes pertaining to adherence we can investigate for the
prediction study. The adherence literature identified two types of adherence:

• Primary Adherence

Patients that fill their first prescription are called primary adherent. Treat-
ment initiation is the first important step and one of the instances where
refill adherence directly maps to real medication adherence. If the patient
did not pick up their medication, we could be somewhat sure that they
will not take them, cases aside where the patient might procure the med-
ication through other means. Prediction whether patients will fill their
first prescription or not might provide care-providers with the ability to
intervene early and address the reasons for primary nonadherence.

• Secondary Adherence

Patients that take their medication as prescribed by the physician are
secondary adherent. Here we see already a difference compared to
being primary adherence. It is not enough to fill the medication, but it
has to be taken as prescribed. In the context of refill adherence, patients
would fill and refill their prescription regularly and on time. Naturally,
the information on whether patients take their medication or not is not
available in secondary database analysis. Still, irregular or a refill stop
might indicate patterns of real nonadherence. Like primary nonadherence,
predicting whether or not patients will inadequately fill their prescription
can help to facilitate timely investigations into the reasons for secondary
nonadherence.

We predict refill adherence for one-year prescriptions, a common prescrip-
tion length for patients with chronic hypertension. This naturally excludes
patients with shorter prescriptions, where continued pharmacological treatment
is not the primary focus. Patterns of nonadherence in this patient subgroup
might not be as crucial as for patients that need drug intervention to stay healthy.
The prediction problem is framed as a classification problem, where patients
above 80% PDC are adherent (1) and nonadherent (0) otherwise.

3.2.1 Data Representation

The features used in this study come from relevant literature on medication
adherence. It must be noted that the reasons for nonadherence to medication
can be manifold; many of them are not contained in EHRs. This limitation
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Table 3.1: Predictors and their description. For the scenario considering the last
five prescription (history), two additional predictors are included.

Predictor Description
PatientAge Patient Age at Prescription
PatientGender Patient Gender
NumPrepYear Number of prescription in particular year
NumDrugClass Number of different drug classes
DrugYear Years since first time prescription
PresQuantity Dose prescribed
NumPolypharm Number of concurrent prescriptions
OverSupply Assumed available supply for prescription
PrescriberAge Age of Prescriber at time of prescription
NumOutvisits Number of outpatient visits
NumInvisits Number of inpatient visits
NumEMvisits Number of emergency visits
DiffOutvisits Number of outpatient visits since last prescription
DiffInvisits Number of inpatient visits since last prescription
DiffEMvisits Number of emergency visits since last prescription
Additional predictors when considering history
DistToPrev Distance (days) to previous prescription
PDC Adherence to previous prescription

makes it significantly harder to predict refill adherence with any specificity.
While demographic factors are available, important patient-related factors or
behavioural factors such as “stress”, “being busy”, “healthcare satisfaction”
or “treatment burden” are not directly available. Some of these individual
factors can be approximated to some extent through healthcare utilisation
patterns in the form of visits to primary care centres, hospitals and emergency
rooms. Treatment burden might be approximated by the number of concurrent
prescriptions and drug variety. The predictors and their descriptions for the
prediction study are shown in table 3.1.

Model evaluation is commonly carried out under the assumption that sam-
ples are independent and identically distributed. Evaluation schemes like
random training test splits or k-fold cross-validation are commonly used to
evaluate model generalisation on unseen data in these cases. In a realistic
deployment scenario using longitudinal data, models need to predict on data
collected some time after model deployment. The new data might exhibit some
form of dataset shift defined as “cases where the joint distribution of inputs
and outputs differs between training and test stage” [59], leading to significant
worse model performance in many cases. While we do not investigate strategies
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to mitigate dataset shift in this thesis, we analyse model performance using
different realistic data-splitting strategies. We investigate four different splits:

Stratified random split Training data is sampled randomly from the data,
stratified by class distribution. This strategy assumes that samples in both
training and test sets are independent and identically distributed (iid), i.e., there
is no change in distribution between old and new data. This strategy is one
of the most commonly applied, especially in combination with random k-fold
cross-validation schemes, to estimate the models’ performance on unseen data.

Splitting by patient Patients are randomly divided into training and test sets.
The patient set in training and test set are disjoint, that is: Ptrain∩Ptest =∅. Each
dataset contains unique patents and their prescriptions, mimicking the situation
where new patients need to be classified, assuming that refilling behaviour can
be inferred from other patients’ behaviour.

We investigate two different approaches for splitting the data based on time:

Forward prediction: Individual split by latest prescription the latest pre-
scription of each patient is contained in the test set. Patients with less than
two prescriptions are split randomly into training and test set. This prediction
scenario might be employed in cases where the model is continuously retrained
as new data becomes available. We expect higher model performance due to
lower refill adherence variability for patients with more extended treatment
history.

Forward prediction: Most recent prescription We reserve 15% of the most
recent prescriptions for the test set. This scenario is likely to occur in practice
after model deployment, with older data being used for model training and
evaluation. Good performance is achieved if the trained model can generalise
to new and old patients alike. This task can be significantly more challenging
due to including new patients that lack an adequate history of treatment while
also exhibiting a potently more volatile refilling behaviour making accurate
predictions more difficult.

3.2.2 Class Imbalance

There is a slight class imbalance issue since most patients (approx. 80%) are
refill adherent to medication. The problem of class-imbalance has been studied
extensively in the literature. There principally two ways of tackling the issue.
The first approach aims to augment the data such that the number of positive and
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negative instances balances. Resampling techniques can do this. For instance,
the minority class can be oversampled, duplicating entries of the minority class.
This approach might work well if the instances are diverse enough but can
often lead to significant over-fitting to the minority class instances resulting in
low generalisation performance on unseen data. Undersampling the majority
class might remove important instances that characterise certain parts of the
feature distribution, depending on the level of class imbalance. Thus, it can
become significantly more challenging for the model to differentiate between
the two classes resulting in higher generalisation error and lower robustness
to noise. Other data augmentation techniques aim to reduce class imbalance
by synthesising new instances of the minority class. A famous example is
the Synthetic Minority Over-sampling Technique (SMOTE) [60]. SMOTE
generates new minority class instances by interpolating features between two
minority class instances. The combination of SMOTE and undersampling of the
majority class shows better performance than pure undersampling alone. Other
approaches use the advances in deep adversarial neural networks to model high
dimensional probability distribution that allows the controlled generation of
new instances of the minority class [61].

The second approach aims to include some form of regularisation in the
model, such that prediction is shifted towards the minority class, avoiding signif-
icant overfitting of the model to the majority class. In this thesis, we account for
the class imbalance by stronger penalisation of model mistakes on the minority
class during training. The penalty is inversely proportional to class frequency,
that is, classification mistakes on the minority class (nonadherent) are penalised
about five times higher during training, shifting prediction performance in
favour of the less frequent class. We employ a variety of different machine
learning algorithms that include the penalty terms differently during training.
For instance, in Random Forest learning, the penalty is used in weighting the
splitting criterion, and the final prediction is made using weighted majority
voting [62], and in logistic regression, the cost function is penalising mistakes
on the minority class higher during optimisation.

3.3 Longitudinal Refill Adherence Pattern Mining and Sim-
ulation

The temporal nature of EHRs opens the possibility of tracking and analysing
a patient’s journey through the healthcare system, allowing the discovery of
patterns that indicate the need for corrective intervention. While predicting
adherence might provide a way of selecting patients for intervention, we have
discovered that models developed on comprehensive EHRs may be unreliable
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Figure 3.1: Six most common two-year PDC-patterns of patients with index
prescription. Four out of six patterns show continuous refilling after the first year,
while the other two patterns are showing discontinuation after the first refill or
first year. From [2].

for patients without treatment history or sudden changes in adherence. Further-
more, the one-dimensional analysis of adherence based on adherence measures
and fixed thresholds leaves out the importance of specific longitudinal patterns
of adherence that might be clinically relevant [63].

3.3.1 Discovery of Common Dispensation Patterns

This work specifically focused on discovering typical or common medication re-
filling patterns, providing baselines for our simulation study later. We primarily
focused on patients with monotherapy, that is, single subsequent prescriptions,
and extract dispensation patterns from the records represented as binary vectors
indicating assumed availability (1) or nonavailability of medication (0). Let
X̄ = {X1,X2, . . . ,XN} be a set of dispensation patterns of n patients with mono-
drug therapy. We partition X̄ int k clusters with (C1,C2, . . . ,Ci), i ∈ {1,2, . . . ,k},
representing the centroid of cluster i. The centroid is the average pattern of all
patterns in a cluster.

For clustering, we use the K-means algorithm [64]. Figure 3.1 shows the six
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most common PDC-patterns (central patterns) discovered in the dispensation
records.

3.3.2 Simulation of Longitudinal Medication Consumption Patterns

While the measurement of medication adherence through secondary database
analysis provides valuable insights into patients refilling habits, it does not
provide any direct insight into if and how patients take their medication. A
patient can be perfectly refill adherent, but the medication is not consumed
as prescribed or not consumed at all. Nonetheless, it is reasonable to assume
and corroborated by previous research [65], that patients that are nonadherent
to medication, e.g., discontinue treatment or do not take them as instructed,
eventually stop refilling or tend to refill their medication irregularly. Given this
link, we might reason about possible consumption patterns that could explain
observed dispensation patterns and rank them in terms of “severeness". For
example, it has been shown that a sudden stop and restart in medication-taking
for anti-hypertensive treatment can be dangerous, leading to spikes in blood
pressure [66].

To this end, we investigate several simulation models of patients exhibiting
different hypothetical consumption patterns. Reasons for inadequate adherence
are manifold. We opted for simple models where the underlying mechanisms
that govern medication consumption are “forgetting", that is, patients forget to
take their medication at random times, and the concept of “motivation", i.e., the
desire or drive of the patient to abide by their regiment. In essence, motivation
approximates the patient’s general state that drives medication consumption,
“summarizing” a multitude of factors, such as stress level, or emotion level.
The general model of medication consumption is governed by combining the
outcomes of two i.i.d. Bernoulli trials:

P(Xc = 1) = P(X1 = 1)∪P(X2 = 1) (3.1)

With Xc being a binary random variable indicating medication consumption.
The binary random variables X1 and X2 are distributed according to:

X1 ∼ B(1,M),X2 ∼ B(1,1− c f prob)

With M ∈ [0,1] being the level of motivation expressed as a probability and
c f rob ∈ [0,1] being the probability of forgetting to take medication.

While the level of forgetting is fixed, i.e., the level of forgetfulness is some-
what stable, motivation is more dynamic and can fluctuate significantly over
some time and may be influenced by environmental factors, such as yearly
follow-ups to renew prescriptions leading to temporary white-coat adherence.
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Figure 3.2: Medication-taking (Drug taken), refill (dispensation) and PDC-
patterns (day covered) generated by the proposed simulation models. From
[2]

Figure 3.2 illustrates simulated medication-taking, refilling and PDC-patterns.
All of the common PDC-patterns, shown in figure 3.1 can be reproduced by
the simulation models. Any consumption pattern that does not exhaust the
initial supply within the two years is compatible with the dispensation pattern
of early discontinuation in the first year. Good and near-perfect refill adherence
is only possible if consumption patterns are also near perfect, that is, accord-
ing to the simulation models, perfect refilling in combination with medication
nonadherence is unlikely. Furthermore, several different consumption patterns
can reproduce similar dispensation patterns. For example, the constant and
sinusoidal model can reproduce patterns with significant gaps between dispen-
sations. These two models exhibit significantly different, and clinically relevant,
consumption behaviour that might need different types of interventions.

Nevertheless, while the levels of actual medication use are not uniquely
retrievable from dispensation records, the potential link between refilling and
medication consumption can help us reason about medication consumption
behind observed dispensations patterns and devise interventions.
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4. SEQUENTIAL DECISION
MAKING FOR MOBILE
HEALTH

4.1 Sequential Decision Making

Sequential Decision Making is a formalism that allows the modelling of pro-
cesses that require decisions or "actions" to be made within an evolving envi-
ronment to achieve a specific goal. These decisions may or may not influence
the state of the environment. The agent needs to be aware of what actions
lead to desirable states while avoiding actions that lead to undesirable states.
Many, if not all, decisions humans do through their daily lives can be viewed as
sequential decision-making processes. For example, buying and selling stocks
at the stock market with the goal of maximizing short- or long-term profit.

Particularly interesting for the theme of this thesis, we could imagine a
hospital setting, where the physician needs to decide on the treatment plan of
the patient. Choosing a particular step in the treatment plan will affect the
health state of the patient and thus determine the health outcome positively or
negatively. The physician needs to be aware of each step’s risk and benefits,
personalised to the treated individual, and decide appropriately. In a mHealth
setting, providing automated and personalised interventions is key to keeping
the patient’s interest and engagement. The decision-maker or "agent" needs
to decide what series of digital intervention is interesting to the individual
patient while considering the long-term effects on a performance metric, such
as medication adherence level or blood pressure.

Given the ubiquitous nature of decision processes, significant focus has
been placed on sequential decision-making to devise methods and algorithms
to find optimal or near-optimal decisions automatically. Great success has
been achieved in complex and challenging environments, particularly in the
domain of competitive games, such as Go [67], Starcraft [68], DotA 2 [69].
These environments are often unpredictable, requiring the player to perform a
mixture of short term and long-term strategies under incomplete information to
be successful.

In this thesis, we focus on the bandit formulation, specifically contextual
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bandits, of RL. In this simplified setting, the agent is only concerned with
maximising cumulative immediate reward. The agent chooses the intervention
that would result in the highest immediate reward, contrary to the setting where
interventions might provide no (or negative) reward in the immediate but result
in future states where more reward can be achieved following the agent’s policy.
In the following sections, we explain common nomenclature in RL in more
detail.

4.1.1 The Agent

The entity or system that interacts with the world and makes decisions is the
so-called “agent”. The agent takes the information about the environment
and decides what actions to take based on its future belief or estimate on the
outcome. This information is also known as the “state” that evolves due to
the agent’s action or outside influences that the agent has no control over. In
the context of mobile health, the agent would be the background system that
observes the state of each patient. This state could be, for example, demographic
information or health-related information. Based on this information, the agent
decides which intervention it should deliver at a particular moment in time.

4.1.2 The Environment

The environment the agent finds itself in is, roughly speaking, everything that
is external to the agent. The agent may or may not influence the environment
through its actions, but in many real-world scenarios, this is often the case, such
as in the hospital example described above. If the agent can affect the state of
the environment, there are several scenarios in how the environment dynamics
may be affected. In a stationary setting, the environment transitions into states
according to a fixed set of rules as a response to the agent’s actions. These rules
can be probabilistic, but the probabilities stay fixed. An agent can discover
these rules over time and exploit them to optimise its decision making. In the
nonstationary setting, these rules can change over time, making the problem
significantly harder since past experience becomes obsolete such that the agent
chooses potentially sub-optimal actions.

Nonstationary is not only encountered as a feature of the environment but
may manifest itself indirectly through incomplete information available to the
agent for decision making. States might look similar but need different actions.
In the mHealth setting, the agent has potentially contest with a combination
of nonstationarity, incomplete information and varying degrees of influence of
actions, requiring complex approaches to action selection to perform optimally.

32



4.1.3 The Reward

For the agent to decide if it needs to change its behaviour, it requires feedback on
the "goodness" or "utility" of actions to achieve its goal. This feedback is often
encoded in the so-called reward, indicating if actions lead to desirable states
to solve a particular problem. Specific to our setting, improvement in blood
pressure regulation is the primary goal. Given that blood pressure measurements
might be infrequent and prone to errors, we might look at other metrics that we
can use to define the reward. For example, the percentage of medication taken.
Furthermore, patients might provide feedback for certain types of interventions
that are interesting for them, allowing the agent to customise intervention
selection further to improve patient engagement.

4.1.4 Behaviour or Policy

The policy is the formal description of the behaviour of the agent. In essence, it
operationalises as a set of complicated rules the agent follows at every step of
interaction with the environment. There are several ways of generating policies
depending on the knowledge of the environment.

One straightforward policy is not necessarily learned at all but provided to
the agent through external means. The agent does not need external information
and achieves its goal by executing a fixed plan. Fixed plans without any form
of environmental feedback are not robust in real-world scenarios due to the
environment’s occasional uncertainties. In a mHealth application, the patient’s
lifestyle might change over time such that reminders at fixed times may become
a nuisance. The agent must occasionally execute a plan to ask the user for an
updated reminding schedule before continuing the reminding plan.

If the environmental state can change at every time step, we have the so-
called stationary policy, or "universal plan" [70]. The agent uses a stationary
policy, either deterministic or stochastic, to evaluate the current state of the
environment and performs the action that would maximize the immediate or
future reward. Complex real-world environments exhibit randomness, prohibit-
ing exact reward prediction. In such scenarios, it is more beneficial to consider
stochastic policies, where the agent chooses an action from a probability distri-
bution to maximise the expected reward. As mentioned earlier, in a mHealth
setting, we are potentially faced with changing patient behaviours and must
adopt a strategy that performs well under nonstationarity and noise.

4.1.5 Exploration and Exploitation

One fundamental issue in most sequential decision making problems is the
balance between exploration and exploitation of actions. This need for balancing
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both aspects arises due to incomplete reward feedback. The agent only receives
the reward of the chosen action; the reward of other actions is not revealed.
This type of reward mechanism is often described as bandit feedback. This
significantly delays learning since the agent needs to explore all actions for all
states sufficiently often to be sure that the optimal action has been chosen for
the given state. When the agent explores, it deliberately chooses actions that
might seem uncompetitive to confirm or revise its belief about the explored
actions’ utility. When the agent exploits, it selects the action that it beliefs
would maximise its reward.

Naturally, the exploration of suboptimal actions for information gathering
will result in less reward obtained and carries the risk of affecting the envi-
ronment in ways that would come with significant penalties. For instance, in
mHealth applications, user engagement is paramount for interventions to be
successful. Interventions that are irrelevant or timely inconvenient might cause
early abandonment of the application. Furthermore, insufficient exploration
can lead to habituation that significantly diminishes the effectiveness of the
interventions. While the later problem can be dealt with by ensuring diversity
among interventions, the former problem requires efficient exploration schemes.

4.2 Multi-Armed Bandits and Contextual Bandits

The multi-armed bandit (MAB) problem in the area of sequential decision mak-
ing has attracted significant attention due to its applicability in many real-world
areas such as clinical trails [71; 72], finance [73; 74], routing networks [75; 76],
online-advertising [77; 78] and movie [79] or app recommendation [80]. The
agent’s goal is to select from a set of available actions (also known as arms) that
would maximise the cumulative immediate reward. Furthermore, the bandit
formulation assumes no influence of actions on future rewards nor states. While
limiting for problems where actions may significantly influence future states
and rewards, this simplified setting works well in a variety of practical settings
and enjoys provable regret guarantees and good sample complexity. The fact
that behaviour change is a long process such that any single intervention has
a temporally limited effect [81], gives us some leeway in needing to estimate
the long-term rewards for particular interventions. This allows us to consider
simpler methods with good convergence and optimally guarantees and better in-
terpretability compared to using more general methods from the full RL setting
that lack these properties.

Significant work has been done to design algorithms that provide an opti-
mum or near optimum exploitation/exploration trade-off for various problem
settings. Previous works have explored the context-free MAB-setting such as
the stochastic variant using upper confidence bounds (UCB) operating under
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Figure 4.1: Top: Multi-Armed Bandit. Bottom: Contextual Bandit

the principle of "optimism in the face of uncertainty" [82; 83] or Bayesian
treatments using Thompson sampling[84; 85] a so-called probability matching
technique.

One particular formulation of the MAB has seen significant attention in
the past. This extension to the MAB-problem is the Contextual Bandit (CB)
problem, also known as the Multi-Armed-Bandit problem with side information
or associative reinforcement learning [86]. The agent receives a context, some
description of the environmental state in the form of a feature vector, before
choosing an action, effectively solving a separate1 MAB-problem conditioned
on each context. Figure 4.1 illustrates the differences between MAB and CB
schematically.

4.3 Corrupted Contextual Bandits with Action Order Con-
straints

In this thesis, we model the task of choosing digital interventions in an mHealth
setting as a CB problem. We follow the definition of the CB problem from [87]
with slight modifications to include information from several users similar to
[88]. At each time step t ∈ {0,1, . . . ,T} [89]

1Strictly speaking, the reward predictor generalises over a space of MAB-problems.
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1. The environment reveals a d-dimensional feature vector xi,t ∈ IRd

that includes information of a user i.

2. The agent chooses an action ai,t from a set K of alternatives accord-
ing to its policy. After playing the action ai,t , the action’s reward
ri

ai,t
∈ [0,1] is revealed.

3. The agent updates its policy using the observations of context xi,t ,
action ai,t and action-reward ri

ai,t
to improve action selection in future

rounds.

The action to play at each round is chosen according to the agent’s policy.
A policy is a function that maps its inputs (the current context) to an action or
distribution over actions, that is, π : X→A. For our problem setting, the rewards
the agent receives are binary, also known as the Bernoulli Bandit problem. This
means the rewards the agent can receive are restricted to the set ri

ai,t
∈ {0,1}.

The difference in cumulative reward between the policy that always chooses
the optimal action on every time step and the learned policy π of the agent is
commonly referred to as the regret. We compute the regret as an average over
the regret of all users defined as [89]

Definition 1 (Average cumulative regret) The average cumulative re-
gret after T time steps over all users in I.

R(T ) =
1
|I|∑i∈I

( T

∑
t=1

ri
t,a∗i,t
−

T

∑
t=1

ri
t,π(xi,t)

)
,

where a∗i,t and ai,t := π(xi,t) denote the optimal action and the action chosen
by the agents policy at time step t for user i, respectively.

4.3.1 A Problem Setting for mHealth

The contextual setting we primarily consider is mHealth, where users’ needs
and wants are partially determined by an underlying evolving state, for example.
Depending on the state, different interventions might be required, e.g., some
users are significantly affected by stress and may need a particular type of
stress coping techniques. In contrast, others may experience stress less severely,
where general advice might be enough [90]. The underlying state may induce a
natural ordering of actions as the users transition through different “levels” or
“stages” that require specific interventions. Additionally, we can see the hidden
underlying state as the different stages people may go through when forming
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habits, such as initiation, learning or maintenance phase, requiring different
interventions or intervention strategies [91].

Furthermore, we have mentioned earlier that the inherent nonstationary
in mHealth poses a problem for simple MAB approaches and we presented
one solution to this problem using contextual information leading the CB for-
mulation. In our setting of mHealth, we expect users not to know their state
perfectly and provide the agent with a noisy estimate of the state or potentially
completely irrelevant context that can significantly affect the agent’s decision
making. This introduced nonstationary through incomplete information, mask-
ing changes in the context to reward mapping or misleading the agent to provide
an intervention that is not appropriate anymore.

To tackle the issue of decision making in environments that exhibit the
aforementioned properties of context uncertainty and action order, we extend
a previously described problem setting. In the previous setting, see [92], the
agent needs to deal with corrupted contexts where the information content is
entirely and irreversibly lost. With probability p, the agent receives a corrupted
context. The arbitrary corruption function ν : X → X governs how the context
is corrupted and is unknown and non-retrievable. The context the agent receives
at every time step is defined as

x̂t =

{
ν(xt) with probability p
xt with probability 1− p.

We extend this problem setting to include several users that can provide
context at varying degrees of corruption. Additionally, to incorporate the
intuition of stages patients might go through, the hidden state evolves in a
Markovian manner; that is, the previous state at t − 1 fully determines the
current state at t. Each state is associated with a specific action. Coupled with
the Markovian state evolution, this defines a sequence of actions as patients
transition through different stages or levels. In protocol 1, we present a high-
level description of our problem setting.

Protocol 1 Problem Protocol
1: procedure PROTOCOL
2: for t = 1,2, . . . ,T do
3: for user i ∈ I do
4: the environment generates context xi,t from state si,t
5: the context is corrupted x̂i,t = ν(xi,t) with probability pi,t
6: the agent chooses an action ai,t = π(x̂i,t)
7: the environment reveals the reward rai,t

8: the state si is updated: si,t+1 = φ(ri
ai,t

,si,t) . "Markovian sampling" of next state
9: policy π of the agent is updated

At each iteration and for every user, the environment generates the context
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xi,t of user i from the underlying state si,t and corrupts it with probability pi,t .
The corrupted context is observed by the agent which chooses an action ai,t to
play according to its policy. The environment reveals the action-reward ri

ai,t
and

updates the state for user i. Finally, the agent updates its policy π [89].

4.3.2 Meta-Algorithm: Competing Bandits with Corrupted Context
and Action Correlations

We present the high-level overview of the meta-algorithm COMpeting BandIts
with corrupted coNtext and action corrElations (COMBINE) in algorithm 1, and
its UCB variant, in the algorithm 2. At each time step, the agent observes the
possibly corrupted context x̂t and decides to use either the CB or MAB policies
to select the action to play (line 6). Another bandit policy, the so-called referee,
chooses to play the CB or MAB at each round. The complete architecture of
the approach is illustrated in figure 4.2.

Algorithm 1 Competing Bandits with Corrupted Context and Action Correlations
1: procedure COMBINE
2: Input: Algorithm Parameters, Policies: CB, MAB and referee, action set
3: Initialize: Book-keeping variables for CB, MAB and referee
4: for t = 1,2, . . . ,T do
5: for user i ∈ I do
6: Observe context x̂i,t
7: Sample Policy π(t) from referee
8: if πi,t = CB policy then
9: choose action using CB policy
10: else
11: choose action using MAB policy from subset Ui

12: Observe reward for the chosen action
13: if previous best action is not equal to the current chosen action then
14: Update Adjacency matrix Λi

15: if CB was chosen as a policy then
16: Update CB policy
17: else
18: Update MAB policy
19: Update referee
20: if reward = 1 then
21: Update best current action
22: else
23: Update best previous action
24: choose action subset Ui to sample from next

Suppose the referee chooses the MAB policy. In that case, the actions are
selected from an action-subset U that is dynamically computed and represents
a candidate set of next promising actions. If the CB policy is chosen, the
algorithm selects the action according to the context. The action is played, and
the agent observes the reward.
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Figure 4.2: COMBINE architecture

If the CB policy was chosen for the action selection, its policy is updated
with the new reward (line 15). Otherwise, we update the MAB policy (line
18). The reasoning for this is that if the referee does not trust the context it
receives, the CB may not gain anything by learning from that data point. As
determined by the referee, discarding useless information is expected to lead to
more efficient learning of the context to action-reward mapping. Similarly, if
the MAB has difficulty selecting the appropriate action, it may only harm its
estimates of true action rewards. The referee is then updated using the reward
and the choice of policy.

The algorithm keeps track of action transitions through an action-to-action
adjacency matrix that contains the number of observed transitions between
actions. The matrix is updated after the reward is observed (line 13). The
MAB uses the adjacency matrix to explore the next promising action in cases
where contexts are uninformative or highly corrupted. As part of the adjacency
matrix update, the best previous action or the current best action is updated
(line 20). The best previous action and current best action are used to record
what action leads into another such that the adjacency matrix can be properly
updated. Finally, the action subset U is updated to play in the next round (line
24). The UCB instantiation of the meta-algorithm is shown in algorithm 2.
Algorithm 3 is used by the MAB to select actions. The procedure dynamically
adapts the subset of action to explore on each round.
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Algorithm 2 Competing UCB with Corrupted Context and Action Correlations
1: procedure COMBINE-UCB
2: Input: α ∈ (0,∞], αB ∈ [0,∞], γ ∈ (0,∞], δR ∈ (0,∞], action set K
3: Initialize: H = {0}|I|×2, R̄ = {0}|I|×|K|, n = {0}|I|×|K|, a+ = {NaN}|I|×1, a− = {NaN}|I|×1, β =
{0}|I|×1, U|I|×|K| = K, Λi = {1}|K|×|K|, ∀a ∈ K : Aa = Id, ∀a ∈ K : ba = {0}d×1

4: for t = 1,2, . . . ,T do
5: for user i ∈ I do
6: Observe context x̂i,t

7: pbi =
eHi

∑eHi
. Compute probability of choosing either CB or MAB

8: Sample Policy πi,t ∼B
(

pbi,t

)
9: if πi,t = π0 then . Choose contextual bandit
10: for action a = 1, . . . ,K do
11: µ̂a← A−1

a ba . Update weight vectors of global CB

12: ai,t = argmaxa∈1,...,K x̂>i,t µ̂a +α

√
x̂>i,t A

−1
a x̂i,t

13: else . Choose Bandit
14: ai,t = argmaxa∈Ui

θi,a

15: Observe reward ri
t,ai,t

for action ai,t

16: if a−i 6= ai,t then . Update Adjacency matrix
17: Λi

a−i ,ai,t
= Λi

a−i ,ai,t
+ ri

t,ai,t

18: if πi,t = π0 then . Update global CB if it was chosen as a policy
19: Aa← Aa + x̂i,t x̂>i,t
20: ba← ba + ri

t,ai,t
x̂i,t

21: else
22: R̄i,ai,t = R̄i,ai,t + γ

(
ri
t,ai,t
− R̄i,ai,t

)
. Update average action reward

23: ni,ai,t = ni,ai,t +1 . Update action count for chosen action

24: θi,ai,t ← R̄i,ai,t +αB

√
2ln(t)
ni,ai,t

. Update action scores

25: Hi,πi,t ← Hi,πi,t +δR
(
ri
t,ai,t
− pbi,πi,t

)
. Update gradient bandit for ai,t

26: Hi,¬πi,t ← Hi,¬πi,t −δR1
ri
t,ai,t pbi,¬πi,t . Update gradient bandit for all a 6= ai,t

27: if ri
t,ai,t

= 1 then
28: a+i ← ai,t . Update best current action
29: else
30: a−i ← a+i . Update best previous action

Ui← Ad jSelect(a−i ,Λ
i,βi,ri

t,ai,t
) . Choose action subset to sample from next

Algorithm 3 Select Action Subset
1: procedure ADJSELECT
2: Input: best previous action a−i , Adjacency matrix Λi, reach βi, reward rai,t

3: if ∀k : θai,t = 0 or a−i = NaN then . Never have played an action before, or no previous best action
4: return A . Return complete action set
5: else
6: if rai,t = 1 then
7: βi← 0 . Reset reach
8: else
9: βi← βi +1 . Increase reach
10: Sort row entries of Adjacency matrix Λi

a− in descending order, creating set Si
a−

11: Select top βi entries Si
a−,{1,...,1+β} := Ui

12: return Ui
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5. Summary of Papers

5.1 Paper I: Pitfalls of medication adherence approxima-
tion through EHR and pharmacy records: Definitions,
data and computation

Purpose and Conclusion We examined common pitfalls in refill adherence
estimations using administrative databases from a theoretical and practical
point of view, focusing on definitional and data related aspects. We used data
from a comprehensive EHR system that includes near complete prescribing and
dispensing information of medication. Through appropriate experimentation,
we show that slight changes in definition can lead to significantly under or
overestimation of refill adherence compared to the gold standard PDC measure.
This has significant implications for, e.g., patient selection for interventions
and may lead to false conclusions in real-world pharmacological studies. We
analysed different methodological and data-related issues, in particular for data-
related issues, we investigated the effects of missing values, duplicate entries
and errors in data input, showing a small yet statistically significant effect on
population averages, and a large effect in individual cases.

Contribution to the Licentiate Thesis This study was conducted with the
goal of selecting the best patients for intervention for the intervention study of
the iMedA Project. This study helped to understand how to quantify medication
adherence through the use of comprehensive EHRs and highlighted the potential
issues that can arise when dealing with real-world databases. Furthermore, this
study stressed the consideration of methodological and data related pitfalls that
are likely to occur and highlights their significance when selecting patients
for intervention. This study’s results have shaped the definition of medication
adherence for the iMedA project and helped in selecting patients.
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5.2 Paper II: Prediction and pattern analysis of medication
refill adherence through electronic health records and
dispensation data

Purpose and Conclusion We investigated the predictability of refill media-
tion adherence under various data splitting strategies using a comprehensive
EHR system. Various machine learning algorithms were investigated under
different predictive scenarios, with tree-based algorithms like Random Forest
and Gradient Boosting Trees showing the highest performance. Predictive
models have high discriminability on patients with high healthcare utilisation,
reaching AUCs of approximately 0.90 and 0.91 on the test sets using baseline
predictors and baseline+history predictors, respectively. The models’ lowest
discriminability is observed in the most realistic scenario of forward-prediction
of new prescriptions, with AUCs of 0.77 and 0.80 with baseline predictors
and baseline+history predictors, respectively. While model discriminability is
relatively high, especially compared to previous studies, these models might
still not be suitable for selecting patients for intervention since performance
is quite low in “interesting” scenarios such as predicting a sudden change in
adherence or predicting adherence of new patients that are at the beginning of
treatment, where AUCs range between 0.56-0.65 are achieved on the test set.

We discovered common patterns of refill adherence for patients that start
their anti-hypertensive treatment, that is, receive medication for the first time.
We observe distinct patterns of refilling and notably the non-unique dependence
of the second-year adherence trajectory on adherence in the first year. While
patients are more likely to continue treatment after the first year, there is a non-
negligible number of patients who discontinue treatment. While some patterns
are more likely than others, this highlights the necessity to support patients
early, even if they are refill adherent in the first year. To better understand
what consumption patterns might cause the patterns observed, we simulated
medication taking and correlated the results with refilling patterns. Assuming
that medication taking and medication refilling are linked, simulations would
allow the reasoning about medication consumption patterns, helping to select
potential candidates for intervention. Our simulations show that certain patho-
logical patterns of medication consumption are incompatible with the observed
pattern of refill adherent patients, implying that nonadherence can occur sud-
denly without prior warning signs in refilling patterns. Furthermore, certain
medication consumption patterns result in similar pickup patterns, obfuscating
potential pathological patterns of medication-taking that can be relevant for
intervention.
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Contribution to the Licentiate Thesis This study helped in understanding
the risk factors associated with refill adherence using clinical and healthcare
utilisation information. It was clear from the outset that EHRs do not contain
the information required to obtain very accurate prediction models. Given
that previous studies had several limitations in terms of available data, the
unique opportunity to test the predictability with more comprehensive EHRs
has allowed us to underline this point further and draw attention to the fact
that factors associated with the patients daily life and perceptions about med-
ication and their illness are more important to proper adherence to treatment.
Furthermore, we found common refill patterns showing that refill adherence
in the first years of treatment is, to some extent, predictive of long-term refill
adherence on population-level, but we often observe deviations from this pat-
tern, resulting in the late detection of real medication nonadherence. These
individuals stop treatment after the first year despite a followup prescription
and may have required support early on, highlighting the need for monitoring
outside the clinical or primary care setting. While the prediction models were
not used directly for selecting patients in the iMedA project, the study was
instrumental in understanding what the limitations are in terms of predicting
MA and usefulness for the project.

5.3 Paper III: Corrupted Contextual Bandits with Action
Order Constraints

Purpose and Conclusion We investigate a novel variant of the contextual
bandit problem with corrupted context motivated by mHealth applications.
MHealth, is a challenging environment for reinforcement learning agent to
perform well in given that the information content provided by users is often
missing, incomplete and unreliable. Furthermore, keeping user engagement is
paramount for the success of interventions and therefore, it is vital to provide
relevant recommendations on time. Additionally, users might transition through
different treatment stages that require more targeted action selection approaches.
The purpose of this study was to formulate a problem setting that would exhibit
the aforementioned properties and give an algorithm that can learn and act more
effectively than simpler solutions.

We develop a meta-algorithm, called COMBINE, that uses a “referee”
that dynamically combines the policies of a contextual bandit, which uses a
“context” or feature vector to make decisions, and a multi-armed bandit which
aims to find the best action irrespective of context. The multi-armed bandit
selects actions through a simple correlation mechanism that captures action
to action transition probabilities, effectively learning a dynamics model of
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the environment, allowing for more efficient exploration of time-correlated
actions than standard bandit algorithms such as LinUCB or LinTS. We evaluate
empirically the performance of the developed algorithm on simulated and
real-world data.

In most settings where the performance of the combined algorithms differ
significantly, the COMBINE approach outperforms single methods, where
adjusting to one policy over the other in the short term can result in a reduction
in regret compared to using CB and MAB algorithms individually. Given that
users might vary in their response to surveys over time, using COMBINE will
provide a significant advantage over simpler solutions. On simulated data,
we observe that for the extrema of high action fluctuations and low context
corruption or low action fluctuations and high context corruption, using a simple
agent approach, i.e., either a CB or MAB, might minimise incurred regret. This
highlights the necessity to find more efficient exploration and exploitation
schemes when combing multiple bandit algorithms such that the overall regret
is not significantly larger than the regret of the best single algorithm.

Contribution to the Licentiate Thesis As part of the iMedA project, we aim
to provide adaptive, personalised digital interventions to improve medication
adherence. This study was conducted as a first step into using reinforcement
learning methods to achieve this goal. There are several challenges associated
with mHealth application that make the straight forward application of standard
RL algorithms difficult. In particular, patients might not provide good contexts
for the agent to make good decisions and delay learning good policies. This
study was conducted to explore the issue of providing relevant interventions
given significant context corruption, affecting the learning and decision making
of autonomous reinforcement learning agents.

This work also highlights the difficulty of optimally combining different
algorithms, the solution to overcome some of the limitations introduced through
context corruption. This study also provided the ground for future work in the
area of reinforcement learning, particular for the problem of sequential decision
making under uncertainty in the area of mHealth and provided us with valuable
insights and ideas.
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6. Conclusion

In this thesis, we have presented completed and ongoing work that is part of the
iMedA project that aims to improve medication adherence through personalised
adaptive interventions in the domain of mHealth. The first part of the project was
dedicated to understanding medication adherence from the clinical perspective,
prediction and measurement using electronic health records, with the goal of
selecting patients for the pilot and large-scale intervention studies. The second
part focused on finding ways to provide personalised adaptive interventions to
improve MA in an automatic fashion.

This thesis contributed to the first part in the following ways. We described
methods to measure MA using EHRs and identified common pitfalls that can
significantly affect the accurate estimation of MA. Secondly, we developed
prediction models for MA and discussed the implications of using data from
EHRs and pharmacy databases to conduct analysis and patient selection for
interventions. While an important first step, estimating adherence using these
data sources are necessarily incomplete. On the one hand, the true underlying
level of adherence to medication is unobserved, and not available in the records
and we must be content with approximate methods using dispensations. On
the other hand, many factors that influence adherence to medication are insuffi-
ciently recorded in EHRs, for example, the attitude towards medication or the
perceived medication burden. Additionally, clinical predictors and demographic
information do not accurately predict adherence to medication, making early
intervention difficult. This highlights the need for the monitoring of adherence
outside the clinical or primary care setting to identify patterns and reasons for
nonadherence early and provide adaptive tailored interventions.

The thesis contributed to the second part of the project in the following. We
present a problem setting in sequential decision making that exhibits propri-
eties of the mHealth domain, context uncertainty in particular. We developed
a meta-algorithm that solves the problem setting, providing the first step to-
wards adaptive interventions in a life-long learning framework. While many
of the contemporary RL algorithms can solve very complex domains, their
practical application in mHealth is hindered by several challenges, such as non-
stationarity in both state and reward, missing or corrupted state information and
the requirement for fast learning with small amounts of data and adaptability to
individual users, to name a few. These limitations require the development of
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novel methods and algorithms that address the challenges providing the basis
for future research in the intersection between RL and mHealth.

6.1 Ongoing and Future Work for the Doctoral Thesis

Ongoing and future work will primarily focus on reinforcement learning ap-
proaches in the domain of mHealth and related applications that have an empha-
sis on optimal decision making under uncertainty in both state and reward. We
believe that the RL framework fits rather well, providing efficient exploration
and exploitation schemes in sequential decision making problems. In particular,
we aim to investigate the following topics.

Fast learning of good policies in non-stationary environments due to vari-
ous uncertainty modalities The provision of optimal interventions in mHealth
comes with significant challenges. From the perspective of RL, algorithms need
to content with non-stationary due to user habituation or burden or missing
and noisy information. From the broader perspective of the doctoral thesis, we
aim to develop algorithms and methods that can cope with non-stationary and
exhibit better sample complexity in a mHealth setting.

Initial work conducted in this thesis, exploiting action correlations, illus-
trated that an adaptive combination of algorithms might provide an interesting
research direction. While combination approaches show promise, naively com-
bining a set of algorithms can incur more regret than the single best algorithm
in the set, particularly for users where algorithms in the set perform simi-
larly [93]. We hypothesise that aside from developing more specialised adaptive
exploration/exploitation schemes to combine algorithms, we can improve per-
formance in mHealth by exploiting structure among sets of interventions or
actions. We expect groups of users to respond to a potentially evolving set of
interventions similarly. This correlation structure among interventions may
allow the transfer of feedback information between algorithms by biasing impor-
tance weighted returns of arms through arm-to-arm reward regression similar to
offline policy evaluation methods such as doubly robust policy evaluation [94].

Another source of delayed learning is the behavioural diversity of patients.
While a system that provides perfect adapted intervention to each patient would
be the best-case scenario, such an approach would most likely fail to provide
good policies in a reasonable amount of interactions. Our experiments in this
thesis show the potential to speed-up policy learning by pooling data from
multiple users with similar behaviours. We aim to explore the incorporation of
mechanisms into our developed algorithms to automatically discover and adapt
to different patient groupings through the use of meta-learning techniques [95].
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This approach could significantly speed up the training of policies that might
perform well “enough” for groups of patients in the short term, but performance
may suffer for individuals within groups in the long term. We hypothesise that
adjusting group policies to individuals will require many fewer interactions
than training an algorithm for specific users from scratch.

Furthermore, incorporating expert knowledge into an RL framework would
provide an additional source of information that can be leveraged for faster
policy learning by focusing exploration, using the expert decision directly or
augmenting it when selecting single or sequences of actions. This would require
the efficient translation of concepts such as “Do not provide smoking inven-
tions to non-smokers” or “provide physical activity interventions to sedentary
individuals” into policies that an RL agent can learn to imitate, constraints the
policy or otherwise incorporate into its action selection scheme. The agent
would then rely on the expert’s decision in cases where the reward model may
be misspecified or the agent is uncertain about the state to reward mapping [96].
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