
SalsaNet: Fast Road and Vehicle Segmentation
in LiDAR Point Clouds for Autonomous Driving

Eren Erdal Aksoy1,2, Saimir Baci2, and Selcuk Cavdar2

Abstract— In this paper, we introduce a deep encoder-
decoder network, named SalsaNet, for efficient semantic seg-
mentation of 3D LiDAR point clouds. SalsaNet segments the
road, i.e. drivable free-space, and vehicles in the scene by
employing the Bird-Eye-View (BEV) image projection of the
point cloud. To overcome the lack of annotated point cloud
data, in particular for the road segments, we introduce an auto-
labeling process which transfers automatically generated labels
from the camera to LiDAR. We also explore the role of image-
like projection of LiDAR data in semantic segmentation by
comparing BEV with spherical-front-view projection and show
that SalsaNet is projection-agnostic. We perform quantitative
and qualitative evaluations on the KITTI dataset, which demon-
strate that the proposed SalsaNet outperforms other state-of-
the-art semantic segmentation networks in terms of accuracy
and computation time. Our code and data are publicly available
at https://gitlab.com/aksoyeren/salsanet.git.

I. INTRODUCTION

Semantic segmentation of 3D point cloud data plays a
key role in scene understanding to reach full autonomy
in self-driving vehicles. For instance, estimating the free
drivable space together with vehicles in the front can lead to
safe maneuver planning and decision making, which enables
autonomous driving to a great extent.

Recently, great progress has been made in deep learning to
generate accurate, real-time and robust semantic segments.
Most of these advanced segmentation approaches heavily
rely on camera data [1], [2], [3]. In contrast to passive camera
sensors, 3D LiDARs (Light Detection And Ranging) have
wider field of view and provide significantly reliable distance
measurement robust to environmental illumination. Thus, 3D
LiDAR scanners have always been an important component
in the perception pipeline of autonomous vehicles.

Unlike images, LiDAR point clouds are, however, rela-
tively sparse and contain a vast number of irregular, i.e.
unstructured, points. In addition, the density of points varies
drastically due to non-uniform sampling of the environment,
which makes the intensive point searching and indexing
operations relatively expensive. Among others, a common
attempt to tackle all these challenges is to project point
clouds into a 2D image space in order to generate a structured
(matrix) form required for the standard convolution process.
Existing 2D projections are Bird-Eye-View (BEV) (i.e. top
view) and Spherical-Front-View (SFV) (i.e. panoramic view).
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However, to the best of our knowledge, there is still no
comprehensive comparative study showing the contribution
of these projection methods in the segmentation process.

In the context of semantic segmentation of 3D LiDAR
data, most of the recent studies employ these projection
methods to focus on the estimation of either the road itself
[4], [5] or only the obstacles on the road (e.g. vehicles)
[6], [7]. All these segments are, however, equally important
for the subsequent navigation components (e.g. maneuver
planning) and, thus, need to be jointly processed. The main
reason of having this decoupled treatment in the literature
is the lack of large annotated point cloud data, in particular,
for the road segments.

In this paper, we study the joint segmentation of the
road, i.e. drivable free-space, and vehicles using 3D LiDAR
point clouds only. We propose a novel “SemAntic Lidar
data SegmentAtion Network”, i.e. SalsaNet, which has an
encoder-decoder architecture where the encoder part contains
consecutive ResNet blocks [8]. Decoder part rather upsam-
ples features and combines them with the corresponding
counterparts from the early residual blocks via skip connec-
tions. Final output of the decoder is then sent to the pixel-
wise classification layer to return semantic segments.

We validate our network’s performance on the KITTI
dataset [9] which provides 3D bounding boxes for vehicles
and a relatively small number of annotated road images
(≈300 samples). Inspired from [10], [11], we propose an
auto-labeling process to automatically label ≈11K point
clouds in the KITTI dataset. For this purpose, we employ
the state-of-the-art methods [12] and [13] to respectively
segment road and vehicles in camera images. These segments
are then mapped from camera space to LiDAR to automati-
cally generate annotated point clouds.

The input of SalsaNet is the BEV rasterized image format
of the point cloud where each image channel stores a unique
statistical cue (e.g. average depth and intensity values). To
further analyze the role of the point cloud projection in the
network performance, we separately train SalsaNet with the
SFV representation and provide a comprehensive comparison
with the BEV counterpart.

Quantitative and qualitative experiments on the KITTI
dataset show that the proposed SalsaNet is projection-
agnostic, i.e. exhibiting high performance in both projection
methods and significantly outperforms other state-of-the-art
semantic segmentation approaches [6], [7], [14] in terms of
pixel-wise segmentation accuracy while requiring much less
computation time.

Our contribution is manifold:
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• We introduce an encoder-decoder architecture to se-
mantically segment road and vehicle points in real-time
using 3D LiDAR data only.

• To automatically annotate a large set of 3D LiDAR
point clouds, we transfer labels across different sensor
modalities, e.g. from camera images to LiDAR.

• We study two commonly used point cloud projection
methods and compare their effects in the semantic
segmentation process in terms of accuracy and speed.

• We provide a thorough quantitative comparison of the
proposed SalsaNet on the KITTI dataset with different
state-of-the-art semantic segmentation networks.

• We also release our source code and annotated point
clouds to encourage further research.

II. RELATED WORK

There exist multiple prior methods exploring the semantic
segmentation of 3D LiDAR point cloud data. Those methods
are basically classified under two categories. The first one
involves conventional heuristic approaches such as model
fitting by employing iterative approaches [15] or histogram
computation after projecting LiDAR point clouds to 2D
space [16]. In contrast, the second category investigates
advanced deep learning approaches [6], [7], [17], [18] which
achieved a quantum jump in performance during the last
decade. These approaches in the latter class differ from each
other not only in terms of network architecture but also in
the way the LiDAR data is represented before being fed to
the network.

Regarding the network architecture, high performance seg-
mentation methods particularly use fully convolutional net-
works [19], encoder-decoder structures [20], or multi-branch
models [1]. The main difference between these architectures
is the way of encoding features at various depths and later
incorporating them for recovering the spatial information.
We, in this study, follow the encoder-decoder structure due
to the high performance observed in the recent state-of-the-
art point cloud segmentation studies [6], [7], [14].

In the context of 3D LiDAR point cloud representation,
there exist three mainstream methods: voxel creation [21],
[20], point-wise operation [22], and image projection [6],
[7], [17]. Voxel representation transforms a point cloud
into a high-dimensional volumetric form, i.e. 3D voxel grid
[21], [20]. Due to sparsity in point clouds, the voxel grid,
however, may have empty voxels which leads to redundant
computations. Point-wise methods [22] process points di-
rectly without converting them into any other form. The
main drawback here is the processing capacity which cannot
efficiently handle large LiDAR point sets unless fusing
them with additional cues from other sensory data, such
as camera images as shown in [3]. To handle the sparsity
in LiDAR point clouds, various image space projections,
such as Bird-Eye-View (BEV) (i.e. top view) [4], [23], [24]
and Spherical-Front-View (SFV) (i.e. panoramic view) [6],
[7], [17], have been introduced. In contrast to voxel and
point-wise approaches, the 2D projection is more compact,
dense and, thus, amenable to real-time computation. In this

study, our network relies on BEV since the SFV projection
introduces distortion and uncommon deformation which has
significant effects on relatively small objects such as vehicles.

Closest to our work are the recent studies in [6], [7]. Those
approaches, however, segment only the road objects such as
vehicles, pedestrians and cyclists using the SFV projection.
In contrast, we only focus on road and vehicle segments
in the poincloud. We exclude pedestrians and cyclists since
their total number of instances in the entire KITTI dataset
is significantly low which naturally yields poor learning
performance as already shown in [6], [7].

There are also numerous networks addressing the road
segmentation [4], [5]. These approaches, however, omit road
objects (e.g. vehicles) and rely on limited annotated data
(≈300 samples) in the KITTI road dataset. To generate
more training data, we automatically label road and vehicle
segments in the entire KITTI point clouds (≈11K samples)
by transferring the camera image annotations derived by
state-of-the-art segmentation methods [12], [13]. Note that
a similar auto-labeling process has already been proposed
in [10], [11] and a new large labeled 3D road scene point
cloud dataset has been introduced in [20], however, the final
labeled data has still not been released in any of these works
for public use, which is not the case for our work.

III. METHOD

In this section, we give a detailed description of our
proposed method starting with the automatic labeling of 3D
point cloud data. We then continue with the point cloud
representation, network architecture and training details.

A. Data Labeling

Lack of large annotated point cloud data introduces a
challenge in the network training and evaluation. Applying
crowdsourced manual data labeling is cumbersome due to
a huge number of points in each individual scene cloud.
Inspired from [10], [11], we, instead, propose an auto-
labeling process illustrated in Fig. 1 to automatically label
3D LiDAR point clouds.

Since the image-based detection and segmentation meth-
ods are relatively more mature than LiDAR-based solutions,
we benefit from this stream of work to annotate 3D LiDAR
point clouds. In this respect, to extract the road pixels, we
use an off-the-shelf neural network MultiNet [12] dedicated
to the road segmentation in camera images. We here note
that the reason of using MultiNet is beacuse it is open-
source and is already trained on the KITTI road detection
benchmark [9]. To extract the vehicle points in the cloud, we
employ Mask R-CNN [13] to segment labels in the camera
image. Note that in case of having bounding box object
annotations, as in the KITTI object detection benchmark [9],
we directly label those points inside the 3D bounding box as
vehicle segments. Finally, with the aid of the camera-LiDAR
calibration, both road and vehicles segments are transferred
from image space to the point cloud as shown in Fig. 1.



Fig. 1. Automatic point cloud labelling to generate network inputs in BEV and SFV formats.

B. Point Cloud Representation
Given an unstructured 3D LiDAR point cloud, we in-

vestigate the 2D grid-based image representation since it is
more compact and yields real-time inference. As 3D points
lies on a grid in the projected form, it also allows standard
convolutions. We here note that reducing the dimension from
3 to 2 does not yield information loss in the point cloud since
the height information is still kept as an additional channel in
the projected image. Therefore, in this work, we exploit two
common projections: Bird-Eye-View (BEV) and Spherical-
Front-View (SFV) representations.

1) Bird-Eye-View (BEV): We initially define a region-of-
interest in the raw point cloud, covering a large area in front
of the vehicle which is 50m long (x ∈ [0, 50]) and 18m
wide (y ∈ [−6, 12]) (see the dark gray points in Fig. 1). All
the 3D points in this region-of-interest are then projected and
discetized in to a 2D grid map with the size of 256×64. The
grid map corresponds to the x− y plane of the LiDAR and
forms the BEV, i.e. top view projection of the point cloud.
We set the grid cell sizes to 0.2 and 0.3 in x− and y−axes,
respectively. A sample BEV image is depicted in Fig. 1.

Similar to the work in [4], in each grid cell, we compute
the mean and maximum elevation, average reflectivity (i.e.
intensity) value, and number of projected points. Each of
these four statistical information is encoded as one unique
image channel, forming a 4D BEV image to be further used
as the network input. Note that we also normalize each image
channel to be within [0, 1]. Compared to [4], we avoid using
the minimum and standard deviation values of the height as
additional features since our experiments showed that there
is no significant contribution coming from those channels.

2) Spherical-Front-View (SFV): Following the work of
[6], we also project the 3D point cloud onto a sphere
to generate dense grid image representation in a rather
panoramic view.

In this projection, each point is represented by two angles
(θ, φ) and an intensity (i) value. In the 2D spherical grid
image, each point is mapped to the coordinates (u, v),
where u = bθ/∆θc and v = bφ/∆φc. Here, θ and φ
are azimuth and zenith angles computed from point co-
ordinates (x, y, z) as θ = arcsin(z/

√
x2 + y2 + z2) and

φ = arcsin(y/
√
x2 + y2), whereas ∆θ and ∆φ define the

discretization resolutions.

For the projection, we mark the front-view area of 90◦

as a region-of-interest. In each grid cell, we separately store
3D Cartesian coordinates (x, y, z), the intensity value (i) and
range r =

√
x2 + y2 + z2. As in [7], we also keep a binary

mask indicating the occupancy of the grid cell. These six
channels form the final image which has the resolution of
64× 512. A sample SFV image is depicted in Fig. 1.

Although SFV returns more dense representation com-
pared to BEV, SFV has certain distortion and deformation
effects on small objects, e.g. vehicles. It is also more likely
that objects in SFV tend to occlude each other. We, therefore,
employ BEV representation as the main input to our network.
We, however, compare these two projections in terms of their
contribution to the segmentation accuracy.

C. Network Architecture

The architecture of the proposed SalsaNet is depicted in
Fig. 2. The input to SalsaNet is a 256×64×4 BEV projection
of the point cloud as described in Sec.III-B.1.

SalsaNet has an encoder-decoder structure where the en-
coder part contains a series of ResNet blocks [8] (Block I
in Fig. 2). Each ResNet block, except the very last one, is
followed by dropout and pooling layers (Block II in Fig. 2).
We employ max-pooling with kernel size of 2 to downsample
feature maps in both width and height. Thus, on the encoder
side, the total downsampling factor goes up to 16. Each
convolutional layer has kernel size of 3, unless otherwise
stated. The number of feature channels are respectively
32, 64, 128, 256, and 256. Decoder network has a sequence
of deconvolution layers, i.e. transposed convolutions (Blocks
III in Fig. 2), to upsample feature maps, each of which is
then element-wise added to the corresponding lower-level
(bottom-up) feature maps of the same size transferred via
skip connections (Blocks IV in Fig. 2). After each feature
addition in the decoder, a stack of convolutional layers
(Blocks V in Fig. 2) are introduced to capture more precise
spatial cues to be further propagated to the higher layers. The
next layer applies 1×1 convolution to have 3 channels which
corresponds to the total number of semantic classes (i.e. road,
vehicle, and background). Finally, the output feature map is
fed to a soft-max classifier to obtain pixel-wise classification.

Each convolution layer in Blocks I-V (see Fig. 2) is
coupled with a leaky-ReLU activation layer. We further



Fig. 2. Architecture of the proposed SalsaNet. Encoder part involves a series of ResNet blocks. Decoder part upsamples feature maps and combines them
with the corresponding early residual block outputs using skip connections. Each convolution layer in Blocks I-V is coupled with a leaky-ReLU activation
layer and a batch normalization (bn) layer.

applied batch normalization [25] after each convolution in
order to help converging to the optimal solution by solving
the internal covariate shift. We here emphasize that dropout
needs to be placed right after batch normalization. As shown
in [26], an early application of dropout can otherwise lead
to a shift in the weight distribution and thus minimize the
effect of batch normalization during training.

D. Class-Balanced Loss Function

Publicly available datasets mostly have an extreme im-
balance between different classes. For instance, in the au-
tonomous driving scenarios, vehicles appear less in the
scene compared to road and background. Such an imbalance
between classes yields the network to be more biased to the
classes that have more samples in training and thus results
in relatively poor segmentation results.

To value more the under-represented classes, we update the
softmax cross-entropy loss with the smoothed frequency of
each class. Our class-balanced loss function is now weighted
with the inverse square root of class frequency, defined as

L(y, ŷ) = −
∑
i

αip(yi)log(p(ŷi)) , (1)

αi = 1/
√
fi , (2)

where yi and ŷi are the true and predicted labels and fi
is the frequency, i.e. the number of points, of the ith class.
This helps the network strengthen each pixel of classes that
appear less in the dataset.

E. Optimizer And Regularization

To train SalsaNet we employ the Adam optimizer [27]
with the initial learning rate of 0.01 which is decayed by
0.1 after every 20K iterations. The dropout probability and

batch size are set to 0.5 and 32, respectively. We run the
training for 500 epochs.

To increase the amount of training data, we also augment
the network input data by flipping horizontally, adding
random pixel noise with probability of 0.5, and randomly
rotating about the z−axis in the range of [−5◦, 5◦].

IV. EXPERIMENTS

To show both the strengths and weaknesses of our model,
we evaluate the performance of SalsaNet and compare with
the other state-of-the-art semantic segmentation methods on
the challenging KITTI dataset [9] which provides 3D LiDAR
scans. We first employ the auto-labeling process described
in Sec. III-A to acquire point-wise annotations. In total, we
generate 10, 848 point clouds where each point is labeled to
one of 3 classes, i.e. road, vehicle, or background. We then
follow exactly the same protocol in [6] and divide the KITTI
dataset into training and test splits with 8, 057 and 2, 791
point clouds. We implement our model in TensorFlow and
release the code and labeled point clouds for public use1.

A. Evaluation Metric
The performance of our model is measured on class-

level segmentation tasks by comparing each predicted point
label with the corresponding ground truth annotation. As
the primary evaluation metrics, we report precision (P),
recall (R), and intersection-over-union (IoU) results for each
individual class as

Pi =
|Pi ∩ Gi|
|Pi|

, Ri =
|Pi ∩ Gi|
|Gi|

, IoUi =
|Pi ∩ Gi|
|Pi ∪ Gi|

,

where Pi is the predicted point set of class i and Gi denotes
the corresponding ground truth set, whereas |.| returns the
total number of points in a set. In addition, we report the
average IoU score over all the three classes.

1https://gitlab.com/aksoyeren/salsanet.git

https://gitlab.com/aksoyeren/salsanet.git


Background Road Vehicle Average

Precision Recall IoU Precision Recall IoU Precision Recall IoU IoU

B
E

V

SqSeg-V1 [6] 99.53 97.87 97.42 72.42 89.71 66.86 46.66 93.21 45.13 69.80
SqSeg-V2 [7] 99.39 98.59 97.99 77.26 87.33 69.47 66.28 90.42 61.93 76.46
U-Net [14] 99.54 98.47 98.03 76.08 90.84 70.65 67.23 90.54 62.80 77.27
Ours 99.46 98.71 98.19 78.24 89.39 71.61 75.13 89.74 69.19 79.74

SF
V

SqSeg-V1 [6] 97.09 95.02 92.39 79.72 83.39 68.79 70.70 91.50 66.34 75.84
SqSeg-V2 [7] 97.43 95.73 93.37 80.98 86.22 71.70 77.25 89.48 70.82 78.63
U-Net [14] 97.84 94.93 92.98 78.14 88.62 71.00 74.65 90.57 69.26 77.84
Ours 97.81 95.76 93.75 81.62 88.38 73.72 77.03 90.79 71.44 79.71

TABLE I
QUANTITATIVE COMPARISON ON KITTI’S TEST SET. SCORES ARE GIVEN IN PERCENTAGE (%).

B. Quantitative Results
We compare the performance of SalsaNet with the other

state-of-the-art networks: SqueezeSeg (SqSeg-V1) [6] and
SqueezeSegV2 (SqSeg-V2) [7]. We particularly focus on
these specialized networks because they are implemented
only for the semantic segmentation task, solely rely on 3D
LiDAR point clouds, and also provide open-source imple-
mentations. We train the networks SqSeg-V1 and SqSeg-
V2 with the same configuration parameters provided in [6]
and [7]. To obtain the highest score, we, however, alter the
learning rate (set to 0.001 for SqSeg-V1) and also apply the
same data augmentation protocol used for the training of
SalsaNet. As an additional baseline method, we implement
a vanilla U-Net model [14] since it is structurally similar
to SalsaNet. For a fair comparison, we train U-Net with
exactly the same parameters (e.g. learning rate, batch size,
etc.) and strategy (e.g. loss function, data augmentation, etc.)
used for the training of SalsaNet. We run our experiments for
both BEV and SFV projections to study the effect of LiDAR
point cloud projection on semantic segmentation. Obtained
quantitative results are reported in Table I.

In all cases, our proposed model SalsaNet considerably
outperforms the others by leading to the highest IoU scores.
In BEV, SalsaNet particularly performs well on vehicles
which are relatively small objects (e.g. compared to the
road). In other methods, the highest IoU score for vehicles is
6.3% less than that of SalsaNet, which clearly indicates that
these methods have difficulties extracting the local features
in BEV projection. When it comes to the SFV projection,
this margin between the vehicle IoU scores shrinks to 0.6%
although SalsaNet still performs the best. It is because SFV
has more compact form: small objects like vehicles become
bigger while relatively bigger objects (such as background)
occupy less portion of the SFV image (see Fig. 1). This
finding indicates that SalsaNet is projection-agnostic as it
can capture the local features, i.e. performs equivalently well,
in both projection methods.

Furthermore, Fig. 3 depicts the final confusion matrices for
SalsaNet using both BEV and SFV projections. This figure
clearly presents that there is no major confusion between
the classes. A small number of vehicle and road points are
labeled as background but not mixed with each other. We
believe that points on the road and vehicle borders in both

image representations cause this minor mislabeling which
can easily be overcome with more precise annotation of the
training data.

C. Qualitative Results

For the qualitative evaluation, Fig. 4 shows some sample
semantic segmentation results generated by SalsaNet using
BEV. In this figure, only for visualization purpose, segmented
road and vehicle points are also projected back to the
respective camera image. We, here, emphasize that these
camera images have not been used for training of SalsaNet.

As depicted in Fig. 4, SalsaNet can, to a great extent,
distinguish road, vehicle, and background points. All other
excluded classes, e.g. cyclists on the road as shown in the
first, fifth, and sixth frames in Fig. 4, are correctly segmented
as background. We also illustrate a failure case in the last
frame of Fig. 4. In this case, the road segment is incomplete.
It is because the ground truth of the road segment only
relies on the output of MultiNet [12] (see Sec. III-A) which,
however, returns missing segments due to overexposure of
the road from strong sunlight (see the camera image in the
red frame in Fig. 4). As a potential solution, we are planning
to employ a more accurate road segmentation network for
camera images to increase the labeling quality of point clouds
in the training dataset.

In the supplementary video2, we provide more qualitative
results on various KITTI scenarios.

2https://youtu.be/grKnW-uGIys

Fig. 3. The confusion matrices for our model SalsaNet using BEV and
SFV projections on KITTI’s test split.

https://youtu.be/grKnW-uGIys


Fig. 4. Sample qualitative results showing successes and failures of our proposed method using BEV [best view in color]. Note that the corresponding
camera images on the top left are only for visualization purposes and have not been used in the training. The dark- and light-gray points in the point cloud
represent points that are inside and outside the bird-eye-view region, respectively. The green and red points indicate road and vehicle segments.

D. Ablation Study

In this ablative analysis, we investigate the individual
contribution of each BEV and SFV image channel in the
final performance of SalsaNet. We also diagnose the effect
of using weighted loss introduced in Eg. 1 in section III-D.

Table II shows the obtained results for BEV. The first
impression that this table conveys is that excluding weights
in the loss function leads to certain accuracy drops. In partic-
ular, the vehicle IoU score decreases by 2.5%, whereas the
background IoU score slightly increases (see the second row
in Table II). This apparently means that the network tends
to mislabel road and vehicles points since they are under-
represented in the training data. IoU scores between the third
and sixth rows in the same table show that features embedded
in BEV image channels have almost equal contributions to
the segmentation accuracy. This clearly indicates that the
BEV projection that SalsaNet employs as an input does not
have any redundant information encoding.

Table III shows the results obtained for SFV. We, again,
observe the very same effect on IoU scores when the applied
loss weights are omitted. The most interesting findings,
however, emerge when we start measuring the contribution
of SFV image channels. As the last six rows in Table III
indicate, SFV image channels have rather inconsistent effects

Channels Loss IoU

Mean Max Ref Dens Weight Background Road Vehicle Average

B
ir

d-
E

ye
-V

ie
w

X X X X X 98.19 71.61 69.19 79.74
X X X X - 98.23 71.52 66.70 78.91
- X X X X 98.13 71.30 66.70 78.81
X - X X X 98.20 71.46 67.98 79.33
X X - X X 98.13 71.02 62.46 77.30
X X X - X 98.13 71.04 67.42 78.95

TABLE II
ABLATIVE ANALYSIS FOR BIRD-EYE-VIEW. CHANNELS MEAN, MAX,
REF, AND DENS STAND FOR THE MEAN AND MAXIMUM ELEVATION,

REFLECTIVITY, AND NUMBER OF PROJECTED POINTS IN ORDER.

on the segmentation accuracy. For instance, while adding the
mask channel increases the average accuracy by 4.5%, the
first two channels that keep x-y coordinates lead to drop in
overall average accuracy by 0.04% and 0.34%, respectively.
This is a clear evidence that the SFV projection introduced
in [6] and [7] contains redundant information that mislead
the feature learning in networks.

Given these findings and also the arguments regarding the
deformation in SFV as stated in section III-B.2, we conclude
that the BEV projection is more appropriate point cloud
representation. Thus, SalsaNet relies on BEV.

E. Runtime Evaluation

Runtime performance is of utmost importance in au-
tonomous driving. Table IV reports the forward pass runtime
performance of SalsaNet in contrast to other networks. To
obtain fair statistics, all measurements are repeated 10 times
using all the test data on the same NVIDIA Tesla V100-
DGXS-32GB GPU card. Obtained mean runtime values
together with standard deviations are presented in Table IV.
Our method clearly exhibits better performance compared to
SqSeg-V1 and SqSeg-V2 in both projection methods, BEV
and SFV. We observed that U-Net performs slightly better
than SalsaNet. There is, however, a trade-off since U-Net

Channels Loss IoU

X Y Z I R M Weight Background Road Vehicle Average

Sp
he

ri
ca

l-
Fr

on
t-

Vi
ew

X X X X X X X 93.75 73.72 71.44 79.71
X X X X X X - 93.90 73.80 70.30 79.43
- X X X X X X 93.76 73.97 71.34 79.75
X - X X X X X 94.00 74.61 71.21 80.05
X X - X X X X 93.90 74.72 69.77 79.50
X X X - X X X 93.07 72.87 66.06 77.41
X X X X - X X 93.19 73.73 64.57 77.30
X X X X X - X 92.46 73.29 59.53 75.20

TABLE III
ABLATIVE ANALYSIS FOR SPHERICAL-FRONT-VIEW. CHANNELS X, Y, Z,

I, R, AND M STAND FOR THE CARTESIAN COORDINATES (x, y, z),
INTENSITY, RANGE, AND OCCUPANCY MASK, IN ORDER.



Mean (msec) Std (msec) Speed (fps)

B
E

V

SqSeg-V1 [6] 6.77 0.31 148 Hz
SqSeg-V2 [7] 10.24 0.31 98 Hz
U-Net [14] 5.31 0.21 188 Hz
Ours 6.26 0.08 160 Hz

SF
V

SqSeg-V1 [6] 6.92 0.21 144 Hz
SqSeg-V2 [7] 10.36 0.41 96 Hz
U-Net [14] 5.45 0.21 183 Hz
Ours 6.41 0.13 156 Hz

TABLE IV
RUNTIME PERFORMANCE ON KITTI DATASET [9]

returns relatively lower accuracies (see Table I). The reason
why U-Net is performing faster is because of the relatively
less number of kernels used in each network layer. We here
note that the standard deviation of the SalsaNet runtime is
much less than the others. This plays a vital role in the
stability of the self-driving perception modules. Lastly, all
the methods are getting faster in case of using BEV. This
can be explained by the fact that the channel number and
resolution in BEV images are slightly less.

Overall, we conclude that our network inference (a single
forward pass) time can reach up to 160 Hz while providing
the highest accuracies in BEV. Note that this high speed
is significantly faster than the sampling rate of mainstream
LiDAR scanners which typically work at 10Hz [9].

V. CONCLUSION

In this work, we presented a new deep network SalsaNet
to semantically segment road, i.e. drivable free-space, and
vehicle points in real-time using 3D LiDAR data only. Our
method differs in that SalsaNet is input-data agnostic, that
means performs equivalently well in both BEV and SFV
projections although other well-known semantic segmenta-
tion networks [6], [7], [14] have difficulties extracting the
local features in the BEV projection. By directly transferring
image-based point-wise semantic information to the point
cloud, our proposed method can automatically generate a
large set of annotated LiDAR data required for training.

Consequently, SalsaNet is simple, fast, and returns state-
of-the-art results. Our extensive quantitative and qualitative
experimental evaluations present intuitive understanding of
the strengths and weaknesses of SalsaNet compared to al-
ternative methods. Application of SalsaNet to bootstrap the
detection and tracking processes is our planned future task
in the context of autonomous driving.
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