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Abstract. In this paper, we introduce SalsaNext for the uncertainty-aware se-
mantic segmentation of a full 3D LiDAR point cloud in real-time. SalsaNext
is the next version of SalsaNet [1] which has an encoder-decoder architecture
where the encoder unit has a set of ResNet blocks and the decoder part com-
bines upsampled features from the residual blocks. In contrast to SalsaNet, we
introduce a new context module, replace the ResNet encoder blocks with a new
residual dilated convolution stack with gradually increasing receptive fields and
add the pixel-shuffle layer in the decoder. Additionally, we switch from stride
convolution to average pooling and also apply central dropout treatment. To di-
rectly optimize the Jaccard index, we further combine the weighted cross entropy
loss with Lovász-Softmax loss [4]. We finally inject a Bayesian treatment to com-
pute the epistemic and aleatoric uncertainties for each point in the cloud. We pro-
vide a thorough quantitative evaluation on the Semantic-KITTI dataset [3], which
demonstrates that the proposed SalsaNext outperforms other published semantic
segmentation networks and achieves 3.6% more accuracy over the previous state-
of-the-art method. We also release our source code 1.
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1 Introduction

Scene understanding is an essential prerequisite for autonomous vehicles. Semantic seg-
mentation helps gaining a rich understanding of the scene by predicting a meaningful
class label for each individual sensory data point. Achieving such a fine-grained seman-
tic prediction in real-time accelerates reaching the full autonomy to a great extent.

Safety-critical systems, such as self-driving vehicles, however, require not only
highly accurate but also reliable predictions with a consistent measure of uncertainty.
This is because the quantitative uncertainty measures can be propagated to the subse-
quent units, such as decision making modules to lead to safe manoeuvre planning or
emergency braking, which is of utmost importance in safety-critical systems. There-
fore, semantic segmentation predictions integrated with reliable confidence estimates
can significantly reinforce the concept of safe autonomy.

Advanced deep neural networks recently had a quantum jump in generating ac-
curate and reliable semantic segmentation with real-time performance. Most of these

1 https://github.com/TiagoCortinhal/SalsaNext

https://github.com/TiagoCortinhal/SalsaNext
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Fig. 1. Mean IoU versus runtime plot for the state-of-the-art 3D point cloud semantic segmenta-
tion networks on the Semantic-KITTI dataset [3]. Inside parentheses are given the total number
of network parameters in Millions. All deep networks visualized here use only 3D LiDAR point
cloud data as input. Note that only the published methods are considered.

approaches, however, rely on the camera images [13], whereas relatively fewer contri-
butions have discussed the semantic segmentation of 3D LiDAR data [27,19]. The main
reason is that unlike camera images, LiDAR point clouds are relatively sparse, unstruc-
tured, and have non-uniform sampling, although LiDAR scanners have a wider field of
view and return more accurate distance measurements.

As comprehensively described in [9], there exists two mainstream deep learning ap-
proaches addressing the semantic segmentation of 3D LiDAR data only: point-wise and
projection-based neural networks (see Fig. 1). The former approach operates directly on
the raw 3D points without requiring any pre-processing step, whereas the latter projects
the point cloud into various formats such as 2D image view or high-dimensional vol-
umetric representation. As illustrated in Fig. 1, there is a clear split between these two
approaches in terms of accuracy, runtime and memory consumption. Projection-based
approaches (shown in green circles in Fig. 1) achieve the state-of-the-art accuracy while
running significantly faster. Although point-wise networks (red squares) have slightly
lower number of parameters, they cannot efficiently scale up to large point sets due to
the limited processing capacity, thus, they take a longer runtime. Note also that both
point-wise and projection-based approaches in the literature lack uncertainty measures,
i.e. confidence scores, for their predictions.

We here introduce a novel neural network architecture to perform uncertainty-aware
semantic segmentation of a full 3D LiDAR point cloud in real-time. Our proposed
network is built upon the SalsaNet model [1], hence, named SalsaNext. The SalsaNet
model has an encoder-decoder skeleton where the encoder unit consists of a series of
ResNet blocks and the decoder part upsamples and fuses features extracted in the resid-
ual blocks. In the proposed SalsaNext, our contributions lie in the following aspects:

– To capture the global context information in the full 360◦ LiDAR scan, we intro-
duce a new context module before encoder, which has a residual dilated convolution
stack fusing receptive fields at various scales.

– To increase the receptive field, we replaced the ResNet block in the encoder with a
novel combination of a set of dilated convolutions (with a rate of 2) each of which
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has different kernel sizes (3, 5, 7). We further concatenated the convolution outputs
and combined with residual connections yielding a branch-like structure.

– To avoid any checkerboard artifacts in upsampling, we replaced the transposed con-
volution layer in the SalsaNet decoder with a pixel-shuffle layer [24] which directly
leverages on the feature maps to upsample the input with less computation.

– To boost the roles of very basic features (e.g. edges and curves) in the segmentation
process, the dropout treatment was altered by omitting the first and last network
layers in the dropout process.

– To have a lighter model, average pooling was employed instead of stride convolu-
tions in the encoder.

– To enhance the segmentation accuracy by optimizing the mean intersection-over-
union score, i.e. the Jaccard index, the weighted cross entropy loss in SalsaNet was
combined with the Lovász-Softmax loss [4].

– To further estimate the epistemic (model) and aleatoric (observation) uncertainties
for each 3D LiDAR point, the deterministic SalsaNet model was transformed into
a stochastic format by applying the Bayesian treatment.

The input of SalsaNext is the rasterized image of the full LiDAR scan, where each
image channel stores position, depth, and intensity cues in the panoramic view format.
The final network output is the point-wise classification scores together with uncer-
tainty measures. To the best of our knowledge, this is the first work showing the both
epistemic and aleatoric uncertainty estimation on the LiDAR point cloud segmentation
task. Computing both uncertainties is of utmost importance in safe autonomous driving
since the epistemic uncertainty can indicate the limitation of the segmentation model
while the aleatoric one highlights the sensor observation noises for segmentation.

Quantitative and qualitative experiments on the Semantic-KITTI dataset [3] show
that the proposed SalsaNext significantly outperforms other published state-of-the-art
networks in terms of pixel-wise segmentation accuracy while having much fewer pa-
rameters, thus requiring less computation time. Note that we also release our source
code and trained model to encourage further research on the subject.

2 Related Work

Regarding the processing of unstructured 3D LiDAR points, there are two common
methods as depicted in Fig. 1: point-wise representation and projection-based render-
ing. We refer the interested readers to [9] for more details.

Point-wise methods [20,21] directly process the raw irregular 3D points without ap-
plying any additional transformation or pre-processing. Shared multi-layer perceptron-
based PointNet [20], the subsequent work PointNet++ [21], and superpoint graph SPG
networks [14] are considered in this group. Although such methods are powerful on
small point clouds, their processing capacity and memory requirement, unfortunately,
becomes inefficient when it comes to the full 360◦ LiDAR scans.

Projection-based methods instead transform the 3D point cloud into various formats
such as voxel cells [32], multi-view representation [15], lattice structure [25,23], and
rasterized images [1,27,28,29]. In the multi-view representation, a 3D point cloud is
projected onto multiple 2D surfaces from various virtual camera viewpoints. Each view
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is then processed by a multi-stream network as in [15]. In the lattice structure, the raw
unorganized point cloud is interpolated to a permutohedral sparse lattice where bilateral
convolutions are applied to occupied lattice sectors only [25]. Methods relying on the
voxel representation discretize the 3D space into 3D volumetric space (i.e. voxels) and
assign each point to the corresponding voxel [32]. Sparsity and irregularity in point
clouds, however, yield redundant computations in voxelized data since many voxel cells
may stay empty. A common attempt to overcome the sparsity in LiDAR data is to
project 3D point clouds into 2D image space either in the top-down [1,30] or spherical
Range-View (RV) (i.e. panoramic view) [2,19,27,28,29] formats. Unlike point-wise and
other projection-based approaches, such 2D rendered image representations are more
compact, dense and computationally cheaper as they can be processed by standard 2D
convolutional layers. Therefore, our SalsaNext model projects the LiDAR point cloud
into 2D RV image generated by mapping each 3D point onto a spherical surface.

When it comes to the uncertainty estimation, Bayesian Neural Networks (BNNs)
are the dominant approach. BNNs learn approximate distribution on the weights to fur-
ther generate uncertainty estimates, i.e. prediction confidences. There are two types of
uncertainties: Aleatoric which can quantify the intrinsic uncertainty coming from the
observed data, and epistemic where the model uncertainty is estimated by inferring
with the posterior weight distribution, usually through Monte Carlo sampling. Unlike
aleatoric uncertainty, which captures the irreducible noise in the data, epistemic un-
certainty can be reduced by gathering more training data. For instance, segmenting out
an object that has relatively fewer training samples in the dataset may lead to high
epistemic uncertainty, whereas high aleatoric uncertainty may rather occur on segment
boundaries or distant and occluded objects due to noisy sensor readings inherent in
sensors. Bayesian modelling helps estimating both uncertainties.

Gal et al. [7] proved that dropout can be used as a Bayesian approximation to esti-
mate the uncertainty in classification, regression and reinforcement learning tasks while
this idea was also extended to semantic segmentation of RGB images by Kendall et
al. [13]. Loquercio et al. [18] proposed a framework which extends the dropout ap-
proach by propagating the uncertainty that is produced from the sensors through the
activation functions without the need of retraining. Recently, both uncertainty types
were applied to 3D point cloud object detection [6] and optical flow estimation [12]
tasks. To the best of our knowledge, BNNs have not been employed in modeling the
uncertainty of semantic segmentation of 3D LiDAR point clouds, which is one of the
main contributions in this work.

In this context, the closest work to ours is [31] which introduces a probabilistic em-
bedding space for point cloud instance segmentation. This approach, however, captures
neither the aleatoric nor the epistemic uncertainty but rather predicts the uncertainty
between the point cloud embeddings. Unlike our method, it has also not been shown
how the aforementioned work can scale up to large and complex LiDAR point clouds.

3 Method

In this section, we give a detailed description of our method including the point cloud
representation, network architecture, uncertainty estimation, and training details.
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Fig. 2. Architecture of the proposed SalsaNext model. Blocks with dashed edges indicate those
that do not employ the dropout. The layer elements k, d, and bn represent the kernel size, dilation
rate and batch normalization, respectively.

3.1 LiDAR Point Cloud Representation

As in [19], we project the unstructed 3D LiDAR point cloud onto a spherical surface to
generate the LIDAR’s native Range View (RV) image. This process leads to dense and
compact point cloud representation which allows standard convolution operations.

In the 2D RV image, each raw LiDAR point (x, y, z) is mapped to an image coor-
dinate (u, v) as (

u
v

)
=

(
1
2 [1− arctan(y, x)π−1]w

[1− (arcsin(z, r−1) + fdown)f
−1]h

)
,

where h and w denote the height and width of the projected image, r represents the
range of each point as r =

√
x2 + y2 + z2 and f defines the sensor vertical field of

view as f = |fdown|+ |fup|.
Following the work of [19], we considered the full 360◦ field-of-view in the projec-

tion process. During the projection, 3D point coordinates (x, y, z), the intensity value
(i) and the range index (r) are stored as separate RV image channels. This yields a
[w × h × 5] image to be fed to the network.

3.2 Network Architecture

The architecture of the proposed SalsaNext is illustrated in Fig. 2. The input to the
network is an RV image projection of the point cloud as described in section 3.1.

SalsaNext is built upon the base SalsaNet model [1] which follows the standard
encoder-decoder architecture with a bottleneck compression rate of 16. The original
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SalsaNet encoder contains a series of ResNet blocks [10] each of which is followed
by dropout and downsampling layers. The decoder blocks apply transpose convolutions
and fuse upsampled features with that of the early residual blocks via skip connections.
To further exploit descriptive spatial cues, a stack of convolution is inserted after the
skip connection. As illustrated in Fig. 2, we in this study improve the base structure of
SalsaNet with the following contributions:

Contextual Module: To aggregate the context information in different regions, we
place a residual dilated convolution stack that fuses a small receptive field with a larger
one right at the beginning of the network. More specifically, we have one 1× 1 and two
3 × 3 kernels with dilation rates = (1, 2), which are residually connected and fused
by applying element-wise addition (see Fig. 2). Starting with relatively small 1 × 1
kernel helps aggregate channel-wise local spatial features while having 3 × 3 kernels
with different dilation rates captures various complex correlations between different
segment classes. This helps focusing on more contextual information alongside with
more detailed global spatial information via pyramid pooling similar to [5].

Dilated Convolution: Receptive fields play a crucial role in extracting spatial fea-
tures. A straightforward approach to capture more descriptive spatial features would be
to enlarge the kernel size. This has, however, a drawback of increasing the number of
parameters drastically. Instead, we replace the ResNet blocks in the original SalsaNet
encoder with a novel combination of a set of dilated convolutions having effective re-
ceptive fields of 3, 5 and 7 (see Block I in Fig. 2). We further concatenate each dilated
convolution output and apply a 1× 1 convolution followed by a residual connection in
order to let the network exploit more information from the fused features coming from
various depths in the receptive field. Each of these new residual dilated convolution
blocks (i.e. Block I) is followed by dropout and pooling layers (Block II in Fig. 2).

Pixel-Shuffle Layer: The original SalsaNet decoder involves transpose convolu-
tions which are computationally expensive layers in terms of number of parameters.
We replace these standard transpose convolutions with the pixel-shuffle layer [24] (see
Block III in Fig. 2) which leverages on the learnt feature maps to produce the upsampled
feature maps by shuffling the pixels from the channel dimension to the spatial dimen-
sion. More precisely, the pixel-shuffle operator reshapes the elements of (H×W×Cr2)
feature map to a form of (Hr ×Wr × C), where H,W,C, and r represent the height,
width, channel number and upscaling ratio, respectively.

We additionally double the filters in the decoder side and concatenate the pixel-
shuffle outputs with the skip connection (Block IV in Fig. 2) before feeding them to the
dilated convolutional blocks (Block V in Fig. 2) in the decoder.

Central Encoder-Decoder Dropout: As quantitative experiments in [13] show, in-
serting dropout only to the central encoder and decoder layers results in better segmen-
tation performance. It is because the lower network layers extract basic features such as
edges and corners which are consistent over the data distribution and dropping out these
layers will prevent the network to properly form the higher level features in the deeper
layers. Central dropout approach eventually leads to higher network performance. We,
therefore, insert dropout in every encoder-decoder layer except the first and last one
highlighted by dashed edges in Fig. 2.
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Average Pooling: In the base SalsaNet model the downsampling was performed
via a strided convolution which introduces additional learning parameters. Given that
the down-sampling process is relatively straightforward, we hypothesize that learning
at this level would not be needed. Thus, to allocate less memory SalsaNext switches to
average pooling for the downsampling.

All these contributions from the proposed SalsaNext network. Furthermore, we ap-
plied a 1× 1 convolution after the decoder unit to make the channel numbers the same
with the total number of semantic classes. The final feature map is finally passed to a
soft-max classifier to compute pixel-wise classification scores. Note that each convo-
lution layer in the SalsaNext model employs a leaky-ReLU activation function and is
followed by batch normalization to solve the internal covariant shift. Dropout is then
placed after the batch normalization. It can, otherwise, result in a shift in the weight
distribution which can minimize the batch normalization effect during training [16].

3.3 Uncertainty Estimation

Heteroscedastic Aleatoric Uncertainty We can define aleatoric uncertainty as be-
ing of two kinds: homoscedastic and heteroscedastic. The former defines the type of
aleatoric uncertainty that remains constant given different input types, whereas the later
may rather differ for different types of input. In the LiDAR semantic segmentation task,
distant points might introduce a heteroscedastic uncertainty as it is increasingly diffi-
cult to assign them to a single class. The same kind of uncertainty is also observable in
the object edges when performing semantic segmentation, especially when the gradient
between the object and the background is not sharp enough.

LiDAR observations are usually corrupted by noise and thus the input that a neural
network is processing is a noisy version of the real world. Assuming that the sensor’s
noise characteristic is known (e.g. available in the sensor data sheet), the input data dis-
tribution can be expressed by the normalN (x,v), where x represents the observations
and v the sensor’s noise. In this case, the aleatoric uncertainty can be computed by
propagating the noise through the network via Assumed Density Filtering (ADF). This
approach was initially applied by Gast et al. [8], where the network’s activation func-
tions including input and output were replaced by probability distributions. A forward
pass in this ADF-based modified neural network finally generates output predictions µ
with their respective aleatoric uncertainties σA.

Epistemic Uncertainty In SalsaNext, the epistemic uncertainty is computed using the
weight’s posterior p(W|X,Y) which is intractable and thus impossible to present ana-
lytically. However, the work in [7] showed that dropout can be used as an approximation
to the intractable posterior. More specifically, dropout is an approximating distribution
qθ(ω) to the posterior in a BNN with L layers, ω = [Wl]

L
l=1 where θ is a set of varia-

tional parameters. The optimization objective function can be written as:

L̂MC(θ) = −
1

M

∑
i∈S

log p(yi|fω(xi)) +
1

N
KL(qθ||p(ω))
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where the KL denotes the regularization from the Kullback-Leibler divergence, N is
the number of data samples, S holds a random set of M data samples, yi denotes the
ground-truth, fω(xi) is the output of the network for xi input with weight parameters
ω and p(yi|fω(xi)) likelihood. The KL term can be approximated as:

KL(qM (W)||p(W)) ∝ i2(1− p)
2

||M||2 −KH(p)

where

H(p) := −p log(p)− (1− p) log(1− p)

represents the entropy of a Bernoulli random variable with probability p and K is a
constant to balance the regularization term with the predictive term.

For example, the negative log likelihood in this case will be estimated as

− log p(yi|fω(xi)) ∝
1

2
log σ +

1

2σ
||yi − fω(xi)||2

for a Gaussian likelihood with σ model’s uncertainty.
To be able to measure the epistemic uncertainty, we employ a Monte Carlo sampling

during inference: we run n trials and compute the average of the variance of the n
predicted outputs:

Varepistemicp(y|fω(x)) = σepistemic =
1

n

n∑
i=1

(yi − ŷ)2 .

As introduced in [18], the optimal dropout rate p which minimizes the KL diver-
gence, is estimated for an already trained network by applying a grid search on a log-
range of a certain number of possible rates in the range [0, 1]. In practice, it means that
the optimal dropout rates p will minimize:

p = argmin
p̂

∑
d∈D

1

2
log(σdtot) +

1

2σdtot
(yd − ydpred(p̂))2 ,

where σtot denotes the total uncertainty by summing the aleatoric and the epistemic
uncertainty, D is the input data, ydpred(p̂) and yd are the predictions and labels.

3.4 Loss Function

Datasets with imbalanced classes introduce a challenge for neural networks. Take an
example of a bicycle or traffic sign which appears much less compared to the vehicles
in the autonomous driving scenarios. This makes the network more biased towards to
the classes that emerge more in the training data and thus yields significantly poor
network performance.

To cope with the imbalanced class problem, we follow the same strategy in SalsaNet
and add more value to the under-represented classes by weighting the softmax cross-
entropy loss Lwce with the inverse square root of class frequency as

Lwce(y, ŷ) = −
∑
i αip(yi)log(p(ŷi)) with αi = 1/

√
fi ,
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where yi and ŷi define the true and predicted class labels and fi stands for the frequency,
i.e. the number of points, of the ith class. This reinforces the network response to the
classes appearing less in the dataset.

In contrast to SalsaNet, we here also incorporate the Lovász-Softmax loss [4] in the
learning procedure to maximize the intersection-over-union (IoU) score, i.e. the Jaccard
index. The IoU metric (see section 4) is the most commonly used metric to evaluate the
segmentation performance. Nevertheless, IoU is a discrete and not derivable metric that
does not have a direct way to be employed as a loss. In [4], the authors adopt this metric
with the help of the Lovász extension for submodular functions. Considering the IoU
as a hypercube where each vertex is a possible combination of the class labels, we relax
the IoU score to be defined everywhere inside of the hypercube. In this respect, the
Lovász-Softmax loss (Lls) can be formulated as follows:

Lls =
1

|C|
∑
c∈C

∆Jc(m(c)) , and mi(c) =

{
1− xi(c) if c = yi(c)
xi(c) otherwise ,

where |C| represents the class number, ∆Jc defines the Lovász extension of the
Jaccard index, xi(c) ∈ [0, 1] and yi(c) ∈ {−1, 1} hold the predicted probability and
ground truth label of pixel i for class c, respectively.

Finally, the total loss function of SalsaNext is a linear combination of both weighted
cross-entropy and Lovász-Softmax losses as follows: L = Lwce + Lls.

3.5 Optimizer And Regularization

As an optimizer, we employed stochastic gradient descent with an initial learning rate of
0.01 which is decayed by 0.01 after each epoch. We also applied an L2 penalty with λ =
0.0001 and a momentum of 0.9. The batch size and spatial dropout probability were
fixed at 24 and 0.2. To prevent overfitting, we augmented the data by applying a random
rotation and translation, flipping randomly around the y-axis and randomly dropping
points before creating the projection. Every augmentation is applied independently of
each other with a probability of 0.5.

3.6 Post-processing

The main drawback of the projection-based point cloud representation is the informa-
tion loss due to discretization errors and blurry convolutional layer responses. This
problem emerges when, for instance, the RV image is re-projected back to the origi-
nal 3D space. The reason is that during the image rendering process, multiple LiDAR
points may get assigned to the very same image pixel which leads to misclassification
of, in particular, the object edges. This effect becomes more obvious, for instance, when
the objects cast a shadow in the background scene.

To cope with these back-projection related issues, we employ the kNN-based post-
processing technique introduced in [19]. The post-processing is applied to every LIDAR
point by using a window around each corresponding image pixel, that will be translated
into a subset of point clouds. Next, a set of closest neighbors is selected with the help
of kNN. The assumption behind using the range instead of the Euclidian distances lies
in the fact that a small window is applied, making the range of close (u, v) points serve
as a good proxy for the Euclidian distance in the 3D space.
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Table 1. Quantitative comparison on Semantic-KITTI test set (sequences 11 to 21). IoU scores
are given in percentage (%). Note that only the published methods are considered.
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Pointnet [20]

50K pts

46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7 14.6
Pointnet++ [21] 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9 20.1
SPGraph [14] 68:3 0.9 4.5 0.9 0.8 1.0 6.0 0.0 49.5 1.7 24.2 0.3 68.2 22.5 59.2 27.2 17.0 18.3 10.5 20.0
SPLATNet [25] 66.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.4 0.8 41.5 0.0 68.7 27.8 72.3 35.9 35.8 13.8 0.0 22.8
TangentConv [26] 86.8 1.3 12.7 11.6 10.2 17.1 20.2 0.5 82.9 15.2 61.7 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.2 35.9
RandLa-Net [11] 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 38.9 86.9 56.3 81.4 61.3 66.8 49.2 47.7 53.9
LatticeNet [23] 92.9 16.6 22.2 26.6 21.4 35.6 43.0 46.0 90.0 59.4 74.1 22.0 88.2 58.8 81.7 63.6 63.1 51.9 48.4 52.9
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SqueezeSeg [27]

64×2048
pixels

68.8 16.0 4.1 3.3 3.6 12.9 13.1 0.9 85.4 26.9 54.3 4.5 57.4 29.0 60.0 24.3 53.7 17.5 24.5 29.5
SqueezeSeg-CRF [27] 68.3 18.1 5.1 4.1 4.8 16.5 17.3 1.2 84.9 28.4 54.7 4.6 61.5 29.2 59.6 25.5 54.7 11.2 36.3 30.8
SqueezeSegV2 [28] 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 36.3 39.7
SqueezeSegV2-CRF [28] 82.7 21.0 22.6 14.5 15.9 20.2 24.3 2.9 88.5 42.4 65.5 18.7 73.8 41.0 68.5 36.9 58.9 12.9 41.0 39.6
RangeNet21 [19] 85.4 26.2 26.5 18.6 15.6 31.8 33.6 4.0 91.4 57.0 74.0 26.4 81.9 52.3 77.6 48.4 63.6 36.0 50.0 47.4
RangeNet53 [19] 86.4 24.5 32.7 25.5 22.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2 49.9
RangeNet53++ [19] 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9 52.2
3D-MiniNet [2] 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 74.5 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6 55.8
SqueezeSegV3 [29] 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9 55.9

SalsaNet [1] 64×2048
pixels

87.5 26.2 24.6 24.0 17.5 33.2 31.1 8.4 89.7 51.7 70.7 19.7 82.8 48.0 73.0 40.0 61.7 31.3 41.9 45.4
SalsaNext [Ours] 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1 59.5

4 Experiments

We evaluate the performance of SalsaNext and compare with the other state-of-the-art
semantic segmentation methods on the large-scale challenging Semantic-KITTI dataset
[3] which provides over 43K point-wise annotated full 3D LiDAR scans. We follow
exactly the same protocol in [19] and divide the dataset into training, validation, and
test splits. Over 21K scans (sequences between 00 and 10) are used for training, where
scans from sequence 08 are particularly dedicated to validation. The remaining scans
(between sequences 11 and 21) are used as test split. The dataset has in total 22 classes
19 of which are evaluated on the test set by the official online benchmark platform. We
implement our model in PyTorch and release the code for public use 2.

To evaluate the results, we use the Jaccard Index, i.e. mean intersection-over-union
(IoU) over all classes given by mIoU = 1

C

∑C
i=1

|Pi∩Gi|
|Pi∪Gi| , where Pi is the set of point

with a class prediction i, Gi the labelled set for class i and | · | the cardinality of the set.

4.1 Quantitative and Qualitative Results

Table 1 reports obtained quantitative results compared to other published point-wise and
projection-based approaches. Our proposed model SalsaNext considerably outperforms
the others by leading to the highest mean IoU score (59.5%) which is +3.6% over the
previous state-of-the-art method [29]. In contrast to the original SalsaNet, we also ob-
tain more than 14% improvement in the accuracy. When it comes to the performance
of each individual category, SalsaNext performs the best in 9 out of 19 categories. Note
that in most of these remaining 10 categories (e.g. road, vegetation, and terrain) Sal-
saNext has a comparable performance with the other approaches.

2 https://github.com/TiagoCortinhal/SalsaNext

https://github.com/TiagoCortinhal/SalsaNext
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Fig. 3. The relationship between the epistemic (model) uncertainty and the number of points (in
log scale) that each class has in the entire test dataset.

Following the work of [18], we further computed the epistemic and aleatoric uncer-
tainty without retraining SalsaNext (see sec. 3.3). Fig. 3 depicts the quantitative rela-
tionship between the epistemic (model) uncertainty and the number of points that each
class has in the entire Semantic-KITTI test dataset. This plot has diagonally distributed
samples, which clearly shows that the network becomes less certain about rare classes
represented by low number of points (e.g. motorcyclist and motorcycle). There is, to
some degree, an inverse correlation between the obtained uncertainty and the segmen-
tation accuracy: when the network predicts an incorrect label, the uncertainty becomes
high as in the case of motorcyclist which has the lowest IoU score (19.4%) in Table 1.

For the qualitative evaluation, Fig. 4 shows some sample semantic segmentation
and uncertainty results generated by SalsaNext on the Semantic-KITTI test set. In this

Fig. 4. Sample qualitative results of SalsaNext [best view in color]. At the bottom of each scene,
the range-view image of the network response is shown. Note that the corresponding camera im-
ages on the right are only for visualization purposes and have not been used in the training. The
top camera image on the right shows the projected segments whereas the middle and bottom im-
ages depict the projected epistemic and aleatoric uncertainties, respectively. Note that the lighter
the color is, the more uncertain the network becomes.
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figure, only for visualization purposes, segmented object points are also projected back
to the respective camera image. We, here, emphasize that these camera images have not
been used for training of SalsaNext. As depicted in Fig. 4, SalsaNext can, to a great
extent, distinguish road, car, and other object points. In Fig. 4, we additionally show the
estimated epistemic and aleatoric uncertainty values projected on the camera image for
the sake of clarity. Here, the light blue points indicate the highest uncertainty whereas
darker points represent more certain predictions. In line with Fig. 3, we obtain high
epistemic uncertainty for rare classes such as other-ground as shown in the last frame in
Fig. 4. We also observe that high level of aleatoric uncertainty mainly appears around
segment boundaries (see the second frame in Fig. 4) and on distant objects (e.g. last
frame in Fig. 4). In the supplementary video 3, we provide more qualitative results.

4.2 Ablation Study

Table 2 shows the total number of model parameters and FLOPs (Floating Point Op-
erations) with the obtained mIoU scores on the Semantic-KITTI validation set before
and after applying the kNN-based post processing (see section 3.6). As depicted in this
table, each of our contributions on SalsaNet has a unique improvement in the accuracy.
The post processing step leads to a certain jump (around 2%) in the accuracy. The peak
in the model parameters is observed when dilated convolution stack is introduced in
the encoder, which is vastly reduced after adding the pixel-shuffle layers in the decoder.
Switching to the pixel-shuffle layers yields 1.0% more accuracy while having 2.52M
less parameters and 22% less FLOPs. Recall that pixel shuffle is a differentiable process
which rearranges elements from depth dimension to spatial domain in a deterministic
way. Therefore, shuffling pixels in the decoder leads to more accurate image recon-
struction as it introduces fewer checkerboard artifacts with a vastly reduced number of
parameters. Combining the weighted cross-entropy loss with Lovász-Softmax leads to
the highest increment in the accuracy. This is mainly because the Jaccard index which is
the main metric to measure the segmentation accuracy is directly optimized as a part of
the loss function. We can achieve the highest accuracy score of 59.9% by having only
2.2% (i.e. 0.15M) extra parameters compared to the original SalsaNet model. Table 2
also shows that the number of FLOPs is correlated with the number of parameters. We
note that adding the epistemic and aleatoric uncertainty computations do not introduce
any additional training parameter since they are computed after the network is trained.

3 https://www.youtube.com/watch?v=MlSaIcD9ItU

Table 2. Ablative analysis on the validation set

mean IoU mean IoU Number of
(w/o kNN) (+kNN) Parameters FLOPs

SalsaNet [1] 43.2 44.4 6.58 M 51.60 G
+ context module 45.0 46.4 6.64 M 69.20 G
+ central dropout 48.5 50.8 6.64 M 69.20 G
+ average pooling 48.9 51.2 5.85 M 66.78 G
+ dilated convolution 50.6 52.3 9.25 M 161.60 G
+ Pixel-Shuffle 51.2 53.3 6.73 M 125.68 G
+ Lovász-Softmax loss 56.4 59.9 6.73 M 125.68 G

https://www.youtube.com/watch?v=MlSaIcD9ItU
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Table 3. Runtime performance on the Semantic-KITTI test set

Processing Time (msec)

CNN kNN Total Speed (fps) Parameters FLOPs

RangeNet++ [19] 63.51 2.89 66.41 15 Hz 50 M 720.96 G
SalsaNet [1] 35.78 2.62 38.40 26 Hz 6.58 M 51.60 G
SalsaNext [Ours] 38.61 2.65 41.26 24 Hz 6.73 M 125.68 G

4.3 Runtime Evaluation

Table 3 reports the total runtime performance for the CNN backbone network and post-
processing module of SalsaNext in contrast to other networks. To obtain fair statistics,
all measurements are performed using the entire Semantic-KITTI dataset on the same
single NVIDIA Quadro RTX 6000 - 24GB card. SalsaNext clearly exhibits better per-
formance compared to RangeNet++ [19] while having 7× less parameters. SalsaNext
can run at 24 Hz when the uncertainty computation is excluded for a fair comparison
with deterministic models. This achieved high speed is significantly faster than the sam-
pling rate of mainstream LiDAR sensors which is typically 10 Hz. Fig. 1 also compares
the overall performance of SalsaNext with the other state-of-the-art semantic segmen-
tation networks in terms of runtime, accuracy, and memory consumption.

5 Conclusion

We introduced SalsaNext as a new uncertainty-aware semantic segmentation network
that can process the full 360◦ LiDAR scan in real-time. SalsaNext builds up on the
SalsaNet model and achieves over 14% more accuracy. In contrast to other published
state-of-the-art methods, SalsaNext returns +3.6% better mIoU score. Our method dif-
fers in that SalsaNext can also estimate both data and model-based uncertainty.
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