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ABSTRACT 

The internet has grown a lot since its invention. As the internet grows, so does the security 

issues. The attackers have found several ways to break into the website, and among them, using 

web-shell is one of the best ways. The traditional methods can detect the web-shell based upon 

the signature or monitoring the traffic over the network to detect abnormal behaviors to identify 

the web-shell. These methods can provide good results in the case of known web-shells. 

However, to identify new web-shell, these methods are proven ineffective. There have been 

several techniques proposed using various neural network algorithms to detect web-shells in the 

past. The research in this thesis is to identify the most suitable neural network algorithm among 

ANN, CNN and LSTM in terms of accuracy, f1-score and time taken and based upon it to 

propose a real-time web-shell detection method using that algorithm and identify how feasible 

and appropriate it is and how it can be implemented practically.  
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 INTRODUCTION 

The attackers always wanted to get access to the server/website for a long period, and to achieve 

this, they use the web-shell. A web-shell is a program written in the server-side programming 

languages such as PHP, JSP, and asp.net, which provides a platform to communicate with the 

server’s operating system. Web-shell is also called a backdoor, because a user can use the webpage 

to upload files, view database, and use the OS commands through the browser [4]. Further, specific 

to the website, the web-shells provide a quick GUI interface to do one or more common tasks 

such as traversing across directories, viewing files, editing files, downloading files, deleting files, 

bypassing mod security and running IRC bots [3].  The main advantage of uploading a web-shell in 

the eyes of an attacker is that he/she can perform several other attacks as well in the website such 

as Remote code execution, XSS, LFI, XXE, Phishing, Parameter pollution, uploaders may disclose 

internal paths, SQL injection and DoS attack[1].  

The web-shell can be divided into three categories Big Trojan, Small Trojan, and Word Trojan, as 

per its size [5]. The Big Trojan is generally with the interactive GUI to perform with all the 

functions, a Small Trojan has the limited functionality such as viewing files or modifying files, and a 

Word Trojan is typically inserted into the original files with a specific OS command.  

The most important thing for an attacker to find out is how he can bypass the security mechanism 

implemented at the server/website, or in short, how he can make the shell undetected. Some of 

the techniques that are currently being used to make the shell undetected are, 1.) Information 

confused, 2.) Character splicing, 3.) Code encryption, 4.) Page splitting and 5.) Multiple Coding [15].           

Traditionally, the methods to detect web-shells are static detection and dynamic detection. The 

static detection methods are based on signature or pattern-based detection. However, various 

encryption and obfuscation techniques are available to bypass the security mechanism. The 

signature-based technique can only be useful in known web-shell and cannot provide efficiency in 

new web-shells. Dynamic detection has the HOOK approach for the key function in the web files, 

and the monitoring approach for OS reading and writing operations in special directories [4].  

There have been several types of research made in detecting web-shell using machine learning 

concepts; however, there is a need for the real-time detection of the web-shell being uploaded to 

the server to increase the security of the server/website. This research focuses on identifying the 
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appropriate algorithm among the three neural network algorithm namely 1.) LSTM 2.) ANN, and 

3.) CNN in terms of time and accuracy along with f1-score and how it can be implemented to 

detect web-shell in real-time. 

1.1 TOPIC GOAL 

The goal of the thesis is to develop a real-time web-shell detection technique using machine learning 

to detect and prevent web-shell upload to its maximum extent. The purpose of the research and 

analysis in this thesis is to provide an understanding of the web-shells, how it can be harmful, 

identify appropriate neural network algorithm among the ANN, CNN, and LSTM and provide a 

real-time web-shell detection approach. 

1.2 MOTIVATION AND INTENTION 

The web-shell opens the door for an attacker to treasure. The web-shells are becoming more 

sophisticated and quite hard to detect at first sight, especially when they employ encryption and 

obfuscation techniques. Therefore, there is a need to develop an efficient way to detect and prevent 

web-shell in real-time from being uploaded to the server using machine learning. 

1.3 RESEARCH QUESTION 

The thesis addresses a question and related to the development of a solution to detect and prevent 

web-shell. 

Research Question 1: How machine learning, particularly neural network algorithms can be 

implemented to detect and prevent web-shell from being uploaded to the server? 

Sub Question 1: How feasible is it in terms of cost and practicality to implement to detect 

web-shell at real time? 

 Sub Question 2: At what extent can it be detected and prevented? 

Sub Question 3: Can it replace traditional detection methods? 

1.4 LITERATURE REVIEW 

Since the purpose of the thesis is to develop a solution to detect and prevent a web-shell in real-

time using machine learning from being uploaded to the server, the study of existing research is 

necessary to develop something that requires detailed reading about the topic.  



 

3 
 

Several experiments/studies have been conducted mostly on neural network algorithms with 

different approaches. Therefore, the existing literature study has helped to gain knowledge about 

how web-shell is classified and how a neural network can be implemented with different 

approaches.  

A new malicious web shell detection approach based on ‘word2vec’ representation and 

convolutional neural network (CNN) [4], was proposed. In the experiment, each word separated 

from the HTTP request is represented as a vector by using the word2vec tool [4]. Next, a web 

request can be represented as a size-fixed matrix [4]. Finally, a CNN based model is designed to 

classify malicious web-shells and normal ones [4].  The research has been conducted by capturing 

HTTP communication as a dataset to test the CNN model. The paper has focused on identifying 

the key-value pairs by finding ‘=’ sign.  The proposed technique has used the word2vec which 

separates each word from HTTP request and presents as a vector and stores it, as this can be time 

consuming and may not be appropriately suitable for real-time web-shell detection method.  

In a web-shell traffic detection with character level features based on deep learning, the authors 

have proposed a deep learning model architecture combining CNN with LSTM [5]. CNN is applied 

to extract local key field features, and the features of text sequences are captured by LSTM [5]. 

The combination of these two methods can mine patterns of Web-shell malicious traffic [5]. In 

their CNN based model, CNN was used to acquire local features such as key malicious fragments, 

whereas LSTM used to learn the sequence pattern. LSTM remembers much longer sequences and 

can possibly add more data requirements with noise. 

In another study conducted by [10], have proposed the following technique. 

1.)  Pattern matching techniques by applying Yara rules to build malicious and benign 

datasets.  

2.)  Converting the PHP source codes to a numerical sequence of PHP opcodes 

3.)  Applying the CNN network model to predict a PHP file, whether embedding a malicious 

code such as a web-shell. 
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Most of the studies have been conducted in a way to detect a web-shell using neural network 

algorithms like CNN, MLP, and LSTM; however, our approach is to develop a model in such a way 

that can be used to detect web-shell at real-time.           

1.5 CHALLENGES 

Detection and prevention of web-shell uploading to the server consist many of the benefits, 

however, behind the doors it contains many challenges to overcome.  

1.) Identification of Information confused, Encryption, obfuscation and multiple file techniques 

used to make web-shell undetectable.   

2.) Finding a solution to reduce the noise in data   

3.) Develop a real-time web-shell detection approach in a way that we can prevent website 

hosting server from being infected with web-shell. 

4.) Practicality in terms of cost and resources  

5.) Scalability 

1.6 THESIS OUTLINE 

The structure that I would like to work upon this thesis will be based on, what is web-shell, the 

study of different web-shells, existing detection and prevention techniques, features extraction 

from web-shell and research conducted previously using machine learning techniques.  

The rest of the sections of the thesis will be 2. Theoretical Background, 3. Methodology and 

Implementation, 4. Result 5. Conclusion, and References. 
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 THEORETICAL BACKGROUND 

A couple of years back, machine learning was only a part of the academic world. However, with 

time, machine learning has drawn the attention of several people with its promising features and 

benefits and become one of the world's largest fields of work. Machine learning is a subgroup of 

Artificial intelligence where several algorithms are available and designed perfectly to learn from 

the provided data and information. The machine learning application can be developed without 

being explicitly programmed as it can use the algorithms and computational statistics to learn from 

the previous data or the provided data. 

Machine learning is mainly classified into three categories namely 1.) Supervised machine learning, 

2.) Unsupervised machine learning and 3.) Reinforcement learning. In supervised machine learning, 

an algorithm will be provided labeled data and based upon it, and it can make predictions. This 

form of machine learning is used in a regression problem or classification problem. In unsupervised 

machine learning, the data is not categorized or labeled; rather, it uses patterns in the data to 

formulate the structure in order to get the meaning. It is mainly used in clustering problems. Lastly, 

Reinforcement learning is using the trial and error approach to get the maximum reward.  

Today, Major companies such as Amazon, Google, and Facebook use machine learning to improve 

user experience, suggest purchases, and promote special offerings [21]. Machine learning 

developers find it far easier to train a system by developing examples of desired output rather than 

programming the traditional input-process-output [21]. The effect of machine learning has rippled 

across a number of industries with data-intensive issues like cybersecurity [21].   

2.1 MACHINE LEARNING IN SECURITY 

With evolving research and implementation of machine learning in the security field, it will be not 

only the security administrator who has to look into logs but also a machine learning system that 

is useful in identifying anomaly in the given log.  Cybersecurity is positioned to leverage machine 

learning to improve malware detection, triage events, recognize breaches, and alert organizations 

to security issues. Machine learning can be used to identify advanced targeting and threats such as 

organization profiling, infrastructure vulnerabilities, and potential interdependent vulnerabilities and 

exploits [21].    
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Machine learning is useful in phishing detection, Network intrusion detection, Testing the security 

of protocols, Various web attacks like SQL injection and XSS, web-shell detection and etc. 

In cybersecurity, data is the biggest challenge. Every minute hundreds of MB of data can be 

generated from IDS, SIEM, user activities, and firewalls in a big organization. Thus, the automation 

of classification and processing is necessary.  The security tasks are divided into 1.) Prediction, 2.) 

Prevention, 3.) Detection, 4.) The response, and 5.) Monitoring. These tasks can be achieved by 

applying machine learning to the cybersecurity system. 

2.2 WHY MACHINE LEARNING FOR WEB-SHELL DETECTION 

Web-shells can be termed as backdoors into the server, which an attacker can deploy to have 

access to the server for a long period. Gradually, the web-shells are becoming so sophisticated that 

antivirus programs cannot detect it as well. The widely used technique for making web shell 

undetectable is code obfuscation. This technique can trick the antivirus program to consider it as 

a normal file.  

There are several benefits of using machine learning to detect web shells, and it can overcome the 

several bypassing ways used by attackers such as code obfuscation, information confused, character 

splicing, and page splitting. The system can be trained by various web-shells which have used 

different bypass techniques. By this training data, the system can identify the web-shells more 

accurately, even if the new web-shells. 

2.3 KEY COMPONENTS 

2.3.1 WEB-SHELL  

Web-shell is a malicious code designed in web scripting languages such as PHP, ASP.net, and JSP. 

The web shell intends to gain the long-time control of the server to perform various malicious 

activities such as modifying files in the website, deleting files or carrying out various other attacks 

such as phishing, SQL injection or XSS. Web-shell can be deployed in the server by exploiting file 

upload vulnerability or performing SQL injection attack using SQLmap.  

The web shell can open doors for various other web attacks on the website, depending upon the 

skills of an attacker.  
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2.3.2 OPCODES 

Opcodes are simply termed as operation codes.  The opcode is an instruction that can be 

performed by the CPU. The value of opcode can be binary or hexadecimal.  Here, each PHP script 

is broken down into a sequence of opcodes which represent the operation to be performed by 

the script.  

In the dataset, we have used a 347 web shell, which has used different bypassing techniques. So, 

each script has been converted to opcodes to identify its operations. Further, the huge comments 

that are used in scripts to misguide antivirus are removed while converting the scripts into opcodes. 

2.3.3 TOKENIZATION 

Tokenization is the process of breaking a sequence of texts into pieces, known as tokens. It can be 

single words or even a sentence. In the process of tokenization, special characters will be 

removed/discarded. This token can become the input for the other process. Tokenization is a part 

of data pre-processing here.  With tokenization, we have removed the unnecessary tags, frequent 

words, punctuation marks, and unnecessary characters.   

2.3.4 EMBEDDING LAYER 

According to Keras, documentation “turns positive integers into a dense vector of fixed size. 

Embedding layer is a simple matrix multiplication that transforms words into their corresponding 

word embedding. In simple terms, an embedding learns tries to find the optimal mapping of each 

of the unique words to a vector of real numbers. The size of that vectors is equal to the output_dim 

[30]. 

2.3.5 ANN (Artificial Neural Network) 

The artificial neural network is one of the core concepts of ML. According to Dr. Robert Hecht-

Nielsen, the ANN is a computing system made up of several simple, highly interconnected 

processing elements, which process information by their dynamic state response to external 

inputs[20]. ANN is mainly used for classification problems. Typically it is divided into two types as 

1.)Feed forward and 2.) Feedback. 
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Fig 1 Artificial Intelligence - Neural Networks 
(Source:https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm) 

 

ANN consist of multiple nodes that is ideal to neurons of the human brain. Links connect each 

neuron in the network, and they can interact with one another. in ANN, each link has weight, and 

ANN can learn by changing the values of weights. 

2.3.6 CNN (Convolutional Neural Network) 

CNN is a deep learning algorithm. CNN can be defined as a class of deep, feed-forward artificial 

neural networks. A CNN can take input, assign weights or biases to differentiate from one another. 

In CNN, to an input, a filter is applied to create a feature map.   

 

Fig 2 A Comprehensive Guide to Convolutional Neural Networks (Source: https://towardsdatascience.com/a-

comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53) 
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In CNN, the input is passed by a series of Convolution layers with applied filters, pooling, fully 

connected layers, and finally, a softmax function to classify an object. The classification will have 

values of either 0 or 1. 

Convolution and pooling layers work as a feature extractors from the input data. On the other 

hand, the FC (fully connected) layer acts as a classifier.  

2.3.7 LSTM 

LSTM is a recurrent neural network. LSTM networks can learn order dependence in sequence 

prediction problem. The LSTM uses an input layer, a hidden layer, and one output layer. The fully 

connected layer holds memory cells and corresponding units. 

2.3.8 DOCKER 

The docker provides an option to separate the application from the infrastructure. The use of 

docker in this research is to use docker as a sandbox. There are three major components of the 

docker as Server, Rest API, and CLI.  

2.4 NEED FOR REAL-TIME WEB-SHELL  DETECTION 

There was plenty of research made in the field of web shell detection using machine learning. Most 

of them were performed by capturing HTTP traffic in a LAB, offline data of web shell, and using an 

algorithm such as Yara. The need to detect the web shell in real-time is to prevent the site from 

being compromised.  As the average site owner does not know about the web shell and its impact 

on the website and on the other hand, the typical developers would not take care of the security 

of the website due to lack of knowledge or budget constraint. In the research, we have worked on 

identifying which algorithm can be best suited and how it can be used in real-time detection while 

preventing the main server from being compromised with web-shell. 
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 METHODOLOGY AND IMPLEMENTATION  

The process of research has been divided into three phases. In the first phase, we have worked on 

searching appropriate literature to gain knowledge about the web-shell, bypass techniques, and 

existing research conducted to detect web-shell using machine learning. In the second phase, we 

have worked on three different neural network algorithms, namely ANN, CNN, and LSTM, to 

determine which algorithm is best suited in terms of time, f1-score, and accuracy. In the third 

phase, we have worked on developing a solution to detect web-shell in real-time and how it can 

be easily implemented.  

3.1 IDENTIFYING APPROPRIATE ALGORITHM 

The most important task to develop the real-time web-shell detection system is to identify the 

appropriate algorithm, and to evaluate it; we have used time and accuracy as a measurement. Three 

neural network algorithms that are used in research are 1.) LSTM, 2.) ANN, and 3.) CNN 

The process from inputting a dataset to training is described in detail as below. 

 

 

 

Fig 3 Web-Shell Detection Process 

 
Step 1: PHP files to Sequence of Opcodes 

Opcodes, i.e., operation codes, specify the operation being performed. During execution, the 

sequence of PHP opcodes can be extracted using pattern matching. For this purpose, PHP v7.2 was 

used along with VLD and PEAR.   
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VLD captures the opcode arrays, which are generated by the PHP compiler during the source code 

execution, which are then executed by the PHP interpreter.  

Machine learning algorithms learn from the patterns in the training data and associate them with 

labels. An opcode can be written in many ways in the actual script, and for the algorithm to 

correctly understand the patterns, it needs to form associations among the many ways in effect 

derive opcode. Using the script directly thus would lead to more noise and more data 

requirements. 

 

 

 

Fig 4: PHP Script Opcode Visualization Using VLD (Source: https://derickrethans.nl/more-source-analysis-with-
vld.html) 

 

cmd=php_bin+" -dvld.active=1 -dvld.execute=0 "+file_path  

Php_bin - php path 

File_path - file path for the PHP source code to be executed 

Command stored in the cmd variable in the script was used to execute the PHP code in python 

using the getstatusoutput() function, which returns the exit code and the text output. The text 
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output was then searched for '\s(\b[A-Z_]+\b)\s' pattern for opcodes using the findall function 

defined in the python library. 

 

Step 2: Numerical Sequence of Opcodes 

The output from the previous step is a string of opcodes separated by a space. This output was 

stored in the .pkl files  

• “data-web-shell -opcode.pkl” having the opcode data for all the files  

• “label-web-shell -opcode.pkl” having the labels for all the files 

 

Labels were stored as 0 (white files) or 1 (Black files) 

The data was then split into 3 parts i.e. train, validation and test (80 %, 10%, 10%) 

Since text cannot be input directly to a neural network, it has to be converted to a sequence of 

integers with each integer representing an opcode. For this purpose, the “tokenizer” function 

defined in the Keras library was used. Tokenizer function splits the text sequences into a list of 

tokens which are then converted into sequences of integers with each integer being the index of a 

token in a dictionary. “pad_sequences” function defined in Keras library was used to ensure all the 

rows in our dataset are of the same length i.e., 75 percentile of opcode sequence length. Too small 

a value means the majority of the files have to be truncated, which leads to a loss of information. 

On the other hand, if a too large value is chosen, it leads to larger processing time and, in most 

cases, does not offer much performance gain. 

Step 3: Training Neural Network Architecture 

 

Post the data preparation, three different neural network architectures were used, i.e., ANN/ 

CNN/LSTM. A sequential function defined in Keras used for defining sequential neural network 

models with the embedding layer is the first layer in each of the cases. The embedding layer is used 

to get a vector representation of each integer representing an opcode. It captures some semantic 

similarity of the inputs by placing semantically similar inputs close in the embedding space, thus 

resulting in a significant performance gain.  
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1.) Multilayer perceptron (MLP) / ANN 

 

 

ANN Architecture  

Layer (type) Output Shape Param # 

embedding_1 

(Embedding) 

(None, 12058, 30) 3270 

flatten_1 (Flatten) (None, 361740) 0 

dense_1 (Dense) (None, 128) 46302840 

dropout_1 (Dropout) (None, 128) 0 

dense_2 (Dense) (None, 64) 8256 

dropout_2 (Dropout) (None, 64) 0 

dense_3 (Dense) (None, 16) 1040 

dense_4 (Dense) (None, 1) 17 

Total params: 46,315,431 

Trainable params: 46,315,431 
Non-trainable params: 0 

 

Table 1: ANN Architecture 

 

Hyperparameters for ANN 

embedding_dim 30 

hidden_units 128 

hidden_units_2 64 

hidden_units_3 16 

learning_rate 0.001 

batch_size 32 

num_epochs 9 
 

Table 2: Hyperparameters for ANN 

Dropout (0.4) was used after every dense layer for regularization. The network architecture, 

several epochs, and dropout value were selected using the validation accuracy. After selecting the 

final hyperparameter, a validation accuracy of 87% with a training accuracy of 76% was 

obtained.  
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2.) Convolutional Neural Network (CNN) 
 

CNN Architecture 

Layer (type) Output Shape Param # 

embedding_2 (Embedding) (None, 12058, 30) 3270 

conv1d_1 (Conv1D) (None, 12058, 64) 7744 

max_pooling1d_1 

(MaxPooling1) 

(None, 4019, 64) 0 

conv1d_2 (Conv1D) (None, 4019, 64) 16448 

global_max_pooling1d_1 (None, 64) 0 

dropout_1 (Dropout) (None, 64) 0 

dense_1 (Dense) (None, 16) 1049 

dense_2 (Dense) (None,1) 17 

Total params: 28,519 
Trainable params: 28,519 

Non-trainable params: 0 
 

Table 3: CNN Architecture 

 

Hyperparameters for CNN 

embedding_dim 30 

learning_rate 0.001 

batch_size 32 

num_epochs 10 

kernel_size 4 

num_filters 64 
 

Table 4: Hyperparameters for CNN 

 

The embedding layer output dimensions, batch size, and learning rates were kept the same for all 

three architectures. Number of epochs, kernel size, number of filters, and number of layers were 

tuned using the validation set. The objective was to obtain as high validation accuracy as possible 

without any overfitting/ underfitting. Dropout after the global max-pooling layer was used for 

regularization. All the layers (except the last one) used ‘relu’ activation. 

100% validation accuracy was obtained with 98% training accuracy. 
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3.) Long short-term memory (LSTM) 

 

LSTM Architecture 

Layer (type) Output Shape Param # 

embedding_1 

(Embedding) 

(None, None, 30) 361740 

lstm_1 (LSTM) (None, 64) 24320 

dense_1 (Dense) (None, 1) 64 

Total params: 386,125 
Trainable params: 386,125 

Non-trainable params: 0 
 
Table 5: LSTM Architecture 

 

Hyperparameters for LSTM 

embedding_dim 30 

hidden_units 64 

learning_rate 0.001 

batch_size 32 

num_epochs 3 
 

Table 6: Hyperparameters for LSTM 

 

LSTM, with a single hidden layer having 64 neurons, was found to be the best performing 

LSTM architecture. A training accuracy of 82% and validation accuracy of 92% was 

obtained.  

4.) Final Training 

 

Post-Hyperparameter tuning of all the three neural networks was retrained on the full training set 

using the best hyperparameters. This trained model was then used for predicting the test set. 

3.2 REAL-TIME WEB-SHELL DETECTION METHOD 

In research, we have used three neural network algorithms, namely ANN, CNN, and LSTM.  

Among the three of them, we have chosen the CNN algorithm to use in real-time web-shell 

detection techniques. The evaluation and results of the three algorithms are described in the results 

section in detail. 
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In real-time detection, there are three main components, Rest-API, AWS, and Docker. The rest-

API will act as a mediator between the website and AWS. In AWS, we have hosted CNN algorithm 

and a docker, and docker will act as a sandbox. The flow of the system is as below. 

 

 

 
Fig 5: Real-Time Web-Shell Detection Process 

 

Step 1: Initialing the request using API 

In a website, we will put an API that acts as a mediator between the website and an AWS server 

that we have used. The API will get the file from the website, converts the file to pickle data and 

send it to the AWS. 

Step 2: Call the docker 

The script in AWS will call the docker and will send the pickle data or .pkl file to the docker. 

Step 3: Converting the pickle data into opcode  

The docker will convert the pickle data into opcode and after converting it, the opcode will be 

sent to the CNN which is hosted in the AWS. 

Step 4: Opcode checking 

The CNN will check for the opcode to determine if it’s a valid file or a web-shell. 
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Step 5: Notifying website 

If it is a valid file, the API will let the website upload the file, and if it is an invalid file, it will be 

dropped by the AWS and will throw an error message to the website, indicating that it is a web-

shell. 

3.3 BENEFITS OF USING REAL-TIME WEB-SHELL DETECTION SYSTEM 

As the purpose of the thesis is to detect the web-shell attack at its maximum extent. Here, in the 

proposed real-time web-shell detection architecture, we have used an API that will send the file to 

the AWS, where we will check the file if it is a normal file or a web-shell file. Therefore, the benefit 

is that the file will not directly be uploaded to the main server or the website hosting server, and 

in this way, we can prevent the main server from being compromised as if the system detects the 

file as web-shell then it will be discarded in AWS itself.  
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 RESULTS AND EVALUATION 

4.1 RESULTS 

The research has been conducted as identifying the appropriate algorithm among the three neural 

network algorithms and how we can implement it to detect web-shell in real-time. We have 

evaluated the result by considering both the time taken along with f1-score and accuracy measures.  

ANN f1-score and accuracy 
 

 Precision recall f1-score support 

0 0.97 0.95 0.96 41 

1 0.94 0.97 0.96 35 

avg / 
total 

0.96 0.96 0.96 76 

[[39 2] 

[1 34]] 
 

Accuracy Score: 0.9605263157894737 
 
Table 7: ANN f1-score 

 

CNN f1-score and accuracy 
 

 Precision recall f1-score support 

0 1.00 0.95 0.97 41 

1 0.95 1.00 0.97 35 

avg / 

total 

0.98 0.97 0.97 76 

[[39 2] 

[0 35]] 

 

Accuracy Score: 0.9736842105263158 
Table 8: CNN f1-score 

 

LSTM f1-score 

 Precision recall f1-score support 

0 0.90 0.93 0.92 41 

1 0.91 0.89 0.90 35 

avg / 

total 

0.91 0.91 0.91 76 

[[38 3] 
[4 31]] 

 

Accuracy Score : 0.9078947368421053 
Table 9: LSTM f1-score 
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Fig 6: Time Measurement For Different Neural Networks 

 

 

     

Fig 7: Accuracy And Time Measure For Different Neural Network 
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Considering the result, CNN is clearly the best architecture for the job. High accuracy was 

achieved using the embedding layers, indicating this is a promising technique to identify web-shells. 

CNN is always much faster as compared to RNNs/ ANNs due to better parallel computation. 

Higher accuracy, in my opinion, is due to taking immediate nearest neighbor into consideration 

(kernel size of 4 was used), a key feature in programming. 

LSTM also ‘remembers sequences’ albeit much longer sequences, but this possibly adds more 

complexity and hence more data requirements along with noise. ANN classifiers create 

relationships between individual vectors representing tokens; hence don’t take context in any form 

into consideration. Still, the performance was nearly as good as CNNs further strengthening the 

stated possibility about LSTM. 

4.2 WHY CNN IS SUITABLE FOR REAL-TIME WEB-SHELL DETECTION 

The advantages of implementing CNN compared to other algorithms can be as follows. 

 CNN models can be trained quickly compared to other neural networks. 

 CNN model limits the number of parameters compared to other neural networks. 

 If the dataset quality is high, we can reduce the false-positive rate. 

 The model is easier to train and hence quite useful to train with the new dataset.  

 The accuracy is high compared to other neural network algorithms in terms of accuracy, 

f1-score, and time is taken. 

Another advantage of using machine learning, particularly CNN, is that we can easily train the 

system with new web-shells. It can also be quite accurate in identifying the new web-shells. 

4.3 EVALUATION 

The result is evaluated using the time taken, f1-score, and accuracy. To evaluate the performance 

of our method on CNN, we have compared the results of other experiments/studies conducted 

before with our model. Although the studies conducted before have achieved excellent results, 

however, our approach was to develop a model in such a way that it can be used in a live 

environment and not just to detect web-shell in the offline environment.  The following table shows 

the results achieved in different studies. 

 



 

21 
 

Evaluation Result. 

No. Paper reference no Precision Recall F1-score Accuracy 

1 4 0.986 0.986 0.986 - 

2 5 0.982 0.978 0.985 - 

3 12 0.982 0.813 0.870 - 

4 15 0.992 0.997 0.994 0.995 

5 10 0.996 0.991 0.994 0.990 

6 19 0.905 0.911 0.908 0.941 

7 Our Result 0.95 1.00 0.97 0.973 
 

Table 10: Evaluation result 

 

We have achieved almost similar results compared to previous experiments/studies as our 

experiment is in its nascent stage and thus need more improvements in terms of more accuracy, 

less time processing, and more scalability and reliability.    
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 CONCLUSION 

The research was an aim to find out how machine learning can be useful to identify web-shell and 

how feasible it is in terms of cost. As per the results, we can say that machine learning can 

be quite a handful particularly CNN in detecting web-shells, and the system can be 

trained with the latest web-shells quite easily. Also, this technique can be useful in detecting 

new web-shells as well. Further, as per analysis, the traditional bypass methods used by the 

attackers to make web-shell undetectable can be overcome at a maximum extent. Further, the 

cost of implementing real-time detection using AWS and docker would not be impractical at the 

initial stage. However, the results need to be evaluated in terms of implementing the concept in a 

commercial way and considering the daily requests made by websites to check for a file. 

Further, the model that we have developed to detect the web-shell in real-time is in its nascent 

stage and needs improvement in terms of ease of use for developers, scalability, and reliability. 

However, we have achieved a good result at the primary stage, but it needs more testing in a real-

world environment and thus needs more improvement. 

5.1 FUTURE WORK 

After analyzing the results achieved in CNN, future work aims to identify how we can make the 

system more stable, practical, and easy to use. The future work also consists of detecting other 

web-attacks such as SQL injection and XSS using machine learning and how all these components 

can be integrated as a single system. 
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APPENDIX 

The instructions for dataset, system and library requirements are as below. Further the details of 

using the machine learning method to detect web-shell is also given. 

• Dataset 

The dataset can be downloaded from the following link. 
https://github.com/gsfish/cnn-webshell-detect/tree/master/dataset 

 

• Requirements 

• Pandas 1.0.3 

• Keras 2.2.0 

• Numpy 1.16.2 

• Seaborn 0.9.0 

• Matplotlib 3.0.2 

• scikit_learn 0.22.2.post1 

 

• Real-time implementation 

• Knowledge of API in python or PHP 

• AWS 

• Docker 
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