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A B S T R A C T

Trucks are designed, configured and marketed for various working
environments. There lies a concern whether trucks are used as in-
tended by the manufacturer, as usage may impact the longevity, effi-
ciency and productivity of the trucks.

In this thesis we propose a framework divided into two separate
parts, that aims to extract costumers’ driving behaviours from Logged
Vehicle Data (LVD) in order to a): evaluate whether they align with so-
called Global Transport Application (GTA) parameters and b): eval-
uate the usage in terms of performance. Gaussian mixture model
(GMM) is employed to cluster and classify various driving behav-
iors. Association rule mining was applied on the categorized clus-
ters to validate that the usage follow GTA configuration. Furthermore,
Correlation Coefficient (CC) was used to find linear relationships be-
tween usage and performance in terms of Fuel Consumption (FC).

It is found that the vast majority of the trucks seemingly follow GTA

parameters, thus used as marketed. Likewise, the fuel economy was
found to be linearly dependent with drivers’ various performances.

The LVD lacks detail, such as Global Positioning System (GPS) infor-
mation, needed to capture the usage in such a way that more defini-
tive conclusions can be drawn.
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1
I N T R O D U C T I O N

This work is carried out as a cooperation between two students at
Halmstad University1 and AB Volvo2. There is an interest from AB
Volvo in the exploration of optimizing sales and offerings of trucks to
customers based on recognized usage patterns of the trucks.

Vehicles are designed and produced for specific areas of use and is
required to meet the customers’ needs in terms of Global Transport
Application (GTA) [3].

This work explores the possibility of gaining a deeper market un-
derstanding and better market position by recognizing usage patterns
of Volvo trucks using machine learning, with the purpose of evaluat-
ing whether a given truck is used as it is designed and marketed by
AB Volvo. Knowing this is beneficial as it may increase the longevity
of the trucks, as the configuration of the trucks can be optimized for
the intended purpose of the truck. If a truck is not used as marketed
and designed, it may lead to increased operating costs due to e.g.
higher Fuel Consumption (FC) or parts failing prematurely.

To address these issues and explore how the trucks are used, we
propose a framework consisting of three main modules, Data prepa-
ration, Clustering and Evaluation, all of which will be described in
detail in Chapter 3.

In Figure 1, a structure of the intended clustering and how the data
is divided is visualized. The dataset, Logged Vehicle Data (LVD), used
throughout this work is provided by AB Volvo.

The foundation of the problem is built upon the following research
objectives:

a) To what extent can we analyze whether GTA parameters align
with usage behaviours of the trucks?

b) Comparing and analyzing if certain trucks performs better or
worse than other trucks for a given behaviour.

All the features, logged during the trucks operation, are divided into
three different categories; usage, performance and exterior condi-
tions. The three mentioned usage categories are described as follows:
Usage conditions represents attributes that are mainly influenced by
the driver, such as average distance driven, percentage of distance
driven using cruise control and percentage of distance driven apply-
ing the brakes. Performance conditions includes attributes that de-
scribe the vehicle efficiency, which is primarily related to e. g. clutch

1 https://www.hh.se/english.html

2 https://www.volvogroup.com/en-en/home.html
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2 introduction

slippage, average FC and percentage of fuel consumed using cruise
control. Finally, Exterior conditions are not influenced by the driver,
nor by the vehicle itself. Instead, these conditions are describing en-
vironmental attributes of where the vehicle has been used. Typical
attributes of this form are average speed, temperature and slope.

Analyzing the attributes based on clustering from these mentioned
categories could provide insight of the vehicles’ usage and perfor-
mance. For instance, an assumption is that long trip driving behaviors
may be characterized by higher average speed, regular use of cruise
control and less use of the accelerator and brake pedal.

Furthermore, as a sub-goal, an automatic description generation
for each cluster is considered. There are numerous ways to tackle this,
one being the employment of an automatic framework that generate
natural text to describing the behaviour of vehicles (numerical data).

LVD

UsagePerformance Exterior

ClusteringClustering Clustering

B1 B2B1 B2 B1 B2

V1: B2, B2, B1

Does usage
align with GTA?

How does vehicle com-
pare to others within
the same behaviours?

Data preparation

Clustering

Behaviours

Vehicles Evaluation

Figure 1: Proposed approach

1.1 lvd

The LVD is logged continuously while the truck is operated and is
divided into two parts, one categorical and one cumulative. The cate-
gorical part of the data contains vehicle specifications, such as engine
type and gear box as well as GTA parameters, which are further dis-
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cussed in Section 1.2. The cumulative part is sensor data that has
been accumulated throughout the lifetime of the trucks. Data pre-
processing is necessary on the data, further discussed in Section 3.1.
The data is collected when the vehicle visits an authorized workshop
and weekly through the telematics system. However, the data collec-
tion has not been as frequent for older vehicles, which implies that
there are irregularities in the frequency domain of the data. Some
trucks has more frequent data entries than others, thus, the data for
vehicles with few entries has been interpolated to give an artificially
crafted, yet realistic idea of how the vehicles has been used between
the readouts.

1.2 global transport application

Previously mentioned GTA defines a number of parameters used to
determine the optimal vehicle specification for the customer, maxi-
mizing their productivity as well as the longevity of the trucks. Some
of these parameters include Gross Combination Weight (GCW), oper-
ating cycle, yearly usage, road condition, topography and ambient
temperature. These are used to tailor the truck for the customer.

The GTA parameters for a given vehicle are present in the LVD along-
side the usage data, which suggests that we can investigate whether
the vehicle has been used as intended when purchased.

1.3 outline

The remainder of this thesis is structured as follows. Firstly, in Chap-
ter 2 the related work within this subject is explored and evaluated to
asses some of the challenges that are present. Secondly, in Chapter 3,
the methodological approach based on findings from both Chapter 2

and experience is described. This is followed by the presentation of
the results attained in Chapter 4. Lastly, the results are discussed in
Chapter 5, followed by the conclusions and future work in Chapter 6.





2
R E L AT E D W O R K

The demand for consumers’ behaviors has dramatically increased in
recent years. There is a common tendency among companies to ana-
lyze collected data for optimization purposes. Especially, considering
optimizing sales, market targeting and improving usage of services.
This is common in many industries, but as mentioned in Chapter 1,
this work is focusing on behaviour and usage of vehicles.

In recent years, numerous research has found reasonable behav-
iors by interpreting collected data from distinguishable vehicle types.
However, work on behavior patterns in relation to whether the ve-
hicles are used as designed and marketed is rarely found. Neverthe-
less, this section will introduce some work that gives a theoretical
overview of how the extraction of behaviors from high dimensional
data can be executed. The evaluation of different driving behaviors
has also been proven to impact various domains positively, including
fuel economy and vehicle functionality. Therefore, by using statistical
and unsupervised approaches, it is of interest to explore how driv-
ing behaviors can optimize the offerings for costumers’ needs and
improve the selection in terms of vehicle configuration when pur-
chasing a new truck. These behaviors are not defined by any form of
known rules, thus difficult to interpret as they depend on many fea-
tures. Statistical definitions or aggregation is necessary to categorize
behaviors and craft high-level features, since the LVD lacks any type
of high-level driving behavior information.

Recently, a comprehensive study of driving behaviors of Plug-in
Hybrid Electric Buses (PHEBs) were conducted by Liang et al. [5]. The
novelty of the paper is the optimization of the fuel economy for var-
ious driving behaviors using combined power sources (i.e. hybrid
vehicles). The study also employ engineering knowledge on the pow-
ertrain to optimize the efficiency of the torque and so forth. Several
aggregated driving behaviors between fixed routes are discussed. The
behaviors are represented statistically and are categorized in various
ways. Some of the interesting behaviors, that are significant for this
work include average speed, standard deviation of speed, average ac-
celeration, standard deviation of acceleration, number of stops and
average deceleration. These driving behaviors are analyzed by the
employment of K-means to estimate clusters combined with a vali-
dation technique named the Davies-Bouldin Index (DBI). Basically, it
measures similarities on intra-clusters and differences between inter-
cluster.

5



6 related work

Walnum and Simonsen [13] in collaboration with a censored Nor-
wegian truck transport company target interesting driving patterns
that could contribute to this work. For instance, patterns influenced
by the driver include, a) percentage of driving time per day spent us-
ing cruise control b) percentage of driving time per day spent driving
in highest gear and c) percentage of driving time per day spent using
an automatic gearshift. Other behaviors that are not directly influ-
enced by the driver are also mentioned, like d) a dummy indicating
whether the trip was made in the winter season, which in the paper
is the period from December 1 to March 31. Rui and Srdjan [11] has
summarized different driving behaviors and prediction methods col-
lected from several researches. They found that average speed is the
most frequently used behavior among approximately 30 categorical
parameters. However, the research was conducted on Hybrid Elec-
tric Vehicles (HEV). Suitable methods are also presented for various
problems. Among these methods are statistical methods, Global Posi-
tioning System (GPS) based algorithms and stochastic Markov chain
algorithms used most frequently. Clustering approaches are also ex-
tensively used when no GPS data is available. Another research [12]
investigates how different parameters correlates with different driv-
ing cycles, including highway, suburban, and urban.

Functionality of the vehicle is another aspect that is either directly
or indirectly influenced by driving behavior. Researchers at Halm-
stad University1 has studied prediction methods for repairs of air
compressors on vehicles, by utilizing maintenance datasets. The re-
searchers found that their methods can outperform human experts
[9]. The paper also references several approaches to attack this main-
tenance predictions, with everything from expert rules to data driven
models. Conveniently, they are using the same or at least similar
datasets to the ones that is used in this work, like e. g. LVD and Volvo
Service Records (VSR). Furthermore, in the mentioned research, the
authors use a Random Forest Decision Tree as classification model
together with two feature selections models. Another research con-
ducted at Halmstad University [2], introduces a method which can
essentially localize track modes. Typically, the modes are defined as
either highway or heavily trafficked routes. They have found that
complex environment extraction can be accomplished by processing
the data stream with an aggregating technique. This is followed by
feature identification and selection. Clusters are then obtained by em-
ploying a GMM. The model is trained by utilizing the Expectation-
maximization (EM) algorithm. Bayesian tracking is then used to im-
prove the parameters of the good clustering models. Finally, the clus-
ters are then evaluated using various unsupervised evaluation mea-
surements, including Adjusted Rand Index (ARI) [4] and Silhouette
Coefficient (SC) [10].

1 https://www.hh.se/en-US/5.html
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related work 7

Another study within the area of driving segment clustering aims
to recognize traffic conditions [7]. Basically, data was gathered from
various driving cycles and then fitted into a K-means model, from
which clusters was obtained. Their traffic recognition system was
found to correctly achieve an accuracy of 87%. In the context of study-
ing performance efficiency such as FC, Correlation Coefficient (CC)s
were used to find linear relationship between usage features and FC.
However, no evaluation between better and worse driving patterns
was studied, which will be considered in this work. Although, rela-
tion between driving behaviors and FC has been investigated in an
another research [8], which were conducted by the same authors. De-
scription of driving cycles were obtained by employing similar clus-
tering (K-means) approach. The authors found that FC, C0 emission,
HC emission, N0x emission were influenced by various driving cy-
cles.

Numerous studies on extracting driving behaviors from various
data sources have been conducted for different purposes. In the previ-
ous mentioned studies it is known to employ classical clustering mod-
els such as K-means and GMM when considering extracting driving
behaviors (clusters) is a valid approach. Furthermore, unsupervised
measurements were also regularly used to find efficient clusters with
high quality. Thereof, measurement methods such as the DBI and SC

[10] was used to evaluate cluster populations. Likewise, ARI [4] were
also considered when measuring mode tracking on driving patterns.
Studies within validation on GTA parameters based on driving behav-
iors has still not been studied adequately. Finding an approach that
describes the linkage between GTA parameters and driving behaviors
will be major challenge in this work. To address this problem, associ-
ation rule mining is considered between categorized clusters and GTA

parameters. A research by Marie et al. [6] has been studying a simi-
lar approach, which was used to discoverer linkage between binary
attributes and clustered sampled data from the vehicle industry.





3
M E T H O D O L O G Y

In this section, several approaches are discussed based on related
work, including data pre-processing, unsupervised algorithms and
evaluation techniques.

The proposed framework which is illustrated in Figure 2 consists of
three main modules. The initial module in the framework named Data
preparation, which is further discussed in Section 3.1. Initially, prepa-
ration of logged sensor data in Section 3.1.1, this includes time-series
conversion and feature aggregation to describe behaviors more explic-
itly. Furthermore, in the same module (Data preparation) is selection
of GTA parameters accomplished, which is discussed Section 3.1.2.

The second module is named Clustering (see Section 3.2). This
module is responsible for evaluating optimal clustering models for
each conditional category (usage, exterior and performance). More-
over, behavior extraction based on the aggregated LVD is then accom-
plished by applying these clustering models on the three conditional
categories (usage, exterior and performance).

The third and final module is named Evaluation, further discussed
in Section 3.3. In this section, we describe how behavior categoriza-
tion of clusters is automatically accomplished by a text driven de-
scription method that is discussed in Section 3.3.1. The validation
link between characteristics such as GTA parameters and vehicle con-
figurations, and the behaviors within clusters is accomplished by ap-
plying association rule learning, which is profoundly discussed in
Section 3.3.2. Finally, evaluation on how different driving behaviors
impact vehicles’ performances are presented in Section 3.3.3.

9
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acteristics
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Data preparation

Clustering
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Figure 2: Framework flowchart

3.1 data preparation

In this section, the data preparation module from the framework is
presented. In addition, the data preparation module contains two par-
allel sections, as displayed in Figure 2.

The pre-processing pipeline on continuous LVD is discussed in Sec-
tion 3.1.1. The parallel section is presented in Section 3.1.2, where GTA

parameter is selected.

3.1.1 Logged vehicle sensor data

As previously mentioned, the LVD consists of two parts, one categor-
ical and one cumulative part. Naturally, due to the vehicle construc-
tion, various instances in the categorical data are missing. This solved
by highlighting all the empty instances.

Furthermore, one of the more important parts of this work is to
define features that captures driving behaviour sufficiently. Due to
the fact that the usage data in the LVD mostly consists of cumulative
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features, the difference between every data readout is calculated. Ba-
sically, this conversion transforms the cumulative features into time-
series for every vehicle, as seen in Equation 1. Where X represents the
feature and t denotes the readout date. However, with this dataset,
one cannot capture any more detailed insight of the usage, than that
of what the truck has been doing each day on average between every
readout.

∆X = Xt+1 −Xt (1)

To describe behaviors in a more sufficient way, the time-series at-
tributes are used to craft features in a higher degree. For instance,
average speed is calculated as shown in Equation 2.

∆Xdistance

∆Tdrive
(2)

, where ∆Xdistance is the distance driven between the readouts and
∆Tdrive is the time spent in drive mode between the readouts. A full
description of all aggregated features are shown in Table 1.

Feature Description

Usage

Average speed Distance driven divided by time driven

RPM Number of engine revolutions divided by engine time

Percentage of cruise distance Distance driven using cruise control divided by distance driven

Percentage of coasting distance Coasting distance divided by distance driven

Percentage of brake distance Break distance divided by distance driven

Percentage of kickdown distance Kickdown distance divided by distance driven

Percentage of driving time Time driven divided by engine time

Percentage of pedal time Pedal time driven divided by driving time

Percentage of PTO time PTO time divided by driving time

Percentage of clutch time Clutch time divided by driving time

Number of clutches Number of clutches divided by 100 km

Number of parks Number of parks divided by 100 km

Maximum torque Maximum clutch torque, represented in percentage

Compressor duty cycle

Distance driven ratio Total distance driven divided by the number of days since last readout

Exterior conditions

Mean slope Average mean slope, represented as gradient percentage

Average outdoor temperature Average outdoor temperature in degrees Celsius

Performance conditions

Average FC Average FC in litres per 100 km

Percentage of cruise fuel Percentage of fuel consumed using cruise control

Percentage of drive fuel Percentage of fuel consumed while driving

Percentage of pedal fuel Percentage of fuel consumed with accelerator pedal pushed down

Percentage of idle fuel Percentage of fuel consumed in idle

Percentage of fuel in top gear Percentage of fuel consumed in the top gear

Clutch number of slips ratio Number of clutch slips per km travelled

Clutch plate wear ratio Clutch plate wear per km travelled

Amount of ash Amount of ash divided by 100 km

Soot level Soot level divided by 100 km

Table 1: Description of all the features aggregated using the LVD. The fea-
tures are sectioned with respect to their condition category.



12 methodology

The aggregated data is found to contain plenty of outliers and in-
finite values, this may be caused by sensor disturbance and invalid
mathematical operations such as division by zero. Therefore, outliers
that are detected outside the tenth and 90:th percentile are removed.
Likewise, infinite values are also eliminated. Subsequently, linear in-
terpolation is then used in every individual vehicle data section to
artificial construct new data points. Basically, linear interpolation is
defined in Equation 3, where x and y represents data points in differ-
ent discrete times steps.

yi = y1 + (x+ x1)
y2 − y1
x2 − x1

(3)

As the variances from various features in the aggregated LVD differs
in terms of range, is the classical Z-score normalization method used
to provide equal contribution to the clustering model (GMM) which
will be used in this work. The Z-score method normalize the data
into a standard normal distribution with zero mean µ(x) and with
a standard deviation σ(x) of 1. Equation 4 finds the population of
the mean, whereas Equation 5 finds the population of the standard
derivation and finally Equation 6 estimates the z-score.

µ =
Σx

n
(4)

σ =

√
Σ(x− µ)2

n
(5)

Zscore =
x− µ

σ
(6)

The normalized aggregated is then used to compute clusters using a
selected model, as discussed in Section 3.2. Finally, the data is then
re-scaled to its normal state when visualized.

3.1.2 GTA parameter selection

The GTA parameters are briefly introduced in Section 1.2. However,
this section will introduce the detailed definitions of the GTAs, and
describe the selection procedure when aligned with the different con-
dition categories. Volvo Trucks define GTA parameters in three cate-
gories, which are defined as Transport mission, Vehicle utilization
and Operating environment. As previously mentioned, the LVD con-
tain numerous GTA parameters, as illustrated in the following descrip-
tion table. Each GTA parameter contain different categorized condi-
tions.
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transport mission :

• Chassis type (DDX_CHASSIS_TYPE), indicates if the ve-
hicle is constructed as a rigid or tractor truck.

• Gross combination weight
(DKX_GROSS_COMBINATION_WEIGHT), describe the
maximum weight allowed of a rigid vehicle. The parameter
contain twelve variables with a weight range on 32 to 64

tons for this particular dataset.

vehicle utilization :

• Transport cycle (X78X_TRANSPORT_CYCLE), discloses the
vehicles’ transport cycle. This includes definitions if the
vehicle should be used for distributing goods, for long-
distance haulage or in construction environments.

– TC-LONGD; the mean distance is more than 50 km be-
tween each pick-up or delivery. It also associates with
high average speed and few stops.

operating environment :

• Topography (QCX_TOPOGRAPHY), whether the vehicle
is mostly used on a flat, predominantly flat or hilly road.
Topography parameters together with GCW, determines the
vehicles’ powertrain specification. Furthermore, topogra-
phy parameters is also used to optimize several aspects,
including performance, service life and fuel economy.

– Flat; Slopes with an average gradient of less than 3%
during on at least 98% of the total distance driven, and
the maximum average gradient should not exceed 8%.

– Predominantly flat; Slopes with an average gradient
of less than 6% during on at least 98% of the total
distance driven, and the maximum average gradient
should not exceed 16%.

– Hilly; Slopes with an average gradient of less than 9%
during on at least 98% of the total distance driven,
and the maximum average gradient should not exceed
20%.

• Road condition (DHX_ROAD_CONDITION), whether the
vehicle is mostly used on smooth or rough roads.

– Smooth; at least 95% driven distance on good quality
roads.

– Rough; a maximum of 5% distance driven on extremely
poor quality roads, and the rest of the road is poor
quality.
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• Ambient temperature
(E1B_AMBIENT_TEMP_UPPER_LIMIT_GTA), describes
if vehicles are supposed to be used above or below 40 de-
grees Celsius.

Manual selection of GTA parameters is considered when behaviors
and GTA are validated as seen in Section 3.3.2. This is based on the
fact that the GTA can not be validated with every condition category
(usage, exterior and performance). For instance, Vehicle utilization
is more likely to identify sufficient findings if validated with usage
conditions, rather than exterior conditions. As usage and exterior
conditions describe different natures.

3.2 clustering on conditional categories

Clustering and other unsupervised approaches are needed to aid the
evaluation of vehicle usage behaviors as these behaviours are primar-
ily unknown. Consequently, GMM together with a optimization cost
function is considered to find appropriate clusters, as discussed in
Section 3.2.1.

3.2.1 Gaussian mixture model clustering and optimization

Generally, centroid clustering techniques like K-means are sensitive to
a larger scale of noise, which is frequent in the aggregated LVD. Con-
sequently, GMM is considered to be used as clustering model, since it
is not as sensitive to noise as the K-means algorithm. GMMs are prob-
abilistic models and are extensions of the K-means, in which clusters
are modeled by Gaussian distributions. This implies that clusters are
not only modeled by the mean, but also by a covariance matrix in
which it describes the nature of its ellipsoid shape. The GMMs are
fitted by maximizing the likelihood of the observed data using EM al-
gorithm. Mathematically, GMMs are described by the probability dis-
tribution, as shown in Equation 7. The size, mean and variance of a
cluster (c) is signified by πc, µc and σc, respectively.

p(x) =
∑
c

πcN(x|µc,σc) (7)

In this work, Multivariate GMMs are considered, as mathematically
described in Equation 8. The mean vector µ has a fixed length n as the
number of features in each conditional category (usage, exterior and
performance. Likewise, the n by n covariance matrix is characterized
as Σ.

N(x|µ,Σ) =
1

(2π)k/2
1

|Σ|1/2
exp{−

1

2
(x− µ)TΣ−1(x− µ)} (8)
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The second order mean µ̂, is estimated in each feature vector µ, as
algebraically seen in Equation 9.

µ̂ =
1

m

∑
i

x(i) (9)

Furthermore, the covariance matrix of each feature is achieved by
estimating Equation 10. Technically,m represents the mean from each
sample i in each vector feature.

Σ̂ =
1

m

∑
i

(x(i) − µ̂)T (x(i) − µ̂) (10)

As previously mentioned, the EM algorithm in Equation 11) is em-
ployed to assign data points to each cluster. Initially, the algorithm
starts (E-step) with the selected number of clusters, with size πc,
mean µc and variance σc. This is achieved by iterating over each sam-
ple xi and estimate the probability γi,c for each cluster c. Moreover,
the probability (γi,c) is used as weight to see if data sample belong
to cluster c. Notice, terms in sum Σc ′=1 (all clusters) are defined to
normalize the probability to one.

γi,c =
πcN(xi|µc,Σc)∑

c ′=1 πjN(xi|µc ′ ,Σc ′)
(11)

The second part (M-step) of the EM algorithm essentially utilizes the
computed probabilities to update its estimates (πc, µc, mc and σc)
for each component.

Each EM iteration increases the log-likelihood, which essentially re-
peats until convergence, as seen in Equation 12.

logp(X|π,µ,Σ) =
∑
c=1

log{
∑
c ′=1

πc ′N(xc|µc ′ ,Σc ′)} (12)

As previously said, covariance matrices describe different shapes of
ellipsoids. However, in this work four types of covariance matrices (Σ)
are considered, full, spherical, tied and diagonal. In addition, full have
the same shape but it can adopt to any shape and position, diagonal is
always oriented along the coordinate axis, tied always have the same
shape but it can adapt to anything and finally, spherical is formed as
a spherical contours in high dimensional space.

To localize the most optimal number of clusters and sufficient co-
variances matrices, is the DBI employed. By minimizing the DBI from
k ∈ (2,kmax) number of clusters it is possible to both measure the
optimal number of cluster and the most sufficient covariance matrix.
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The DBI is used as cost function which essentially measures the ra-
tio of relationship between inter-clusters, Equation 14, and the outer-
clusters distances, Equation 15, as seen in Equation 13. The cluster
center points represents vi and vj and x is termed to define all indi-
viduals in cluster i.

Costi = min
j=1,2,...,k

Costij = min
j=1,2...,k

s(ci) + s(cj)

d(ci, cj)
(13)

s(ci) =
1

|ci|

∑
x∈ci

‖x− vi‖ (14)

d(ci, cj) = ‖vi − vj‖ (15)

Decreased DBI indicates more separated and dense clusters while
high values entails indistinguishable clusters. Technically, the DBI in-
dex drops when the numerator (outer-clusters distances) increases or
the denominator (inter-clusters distances) decreases (see Equation 13).

The DBI is also used for other purposes, due to the fact that Principle
Component Analysis (PCA) and
Multidimensional Scaling (MDS) cause individual features to be hid-
den behind a multidimensional spaces. As previously mentioned,
high dimensional data like the aggregated LVD might be difficult to
interpret when visualized. Especially, considering finding combina-
tion of features in high dimensional data, that make sense in a one
and two-dimensional space.

The foundation of this visualization method is to compute clusters
on high dimensional usage data and project segregated clusters in
either one or two-dimensional domain perspective.

Initially, this is accomplished by assigning a cluster ID to every sam-
ple in the aggregated LVD. Every feature or two-dimensional feature
combination are validated by estimating the cost function. Finally, all
validations are then ranked accordingly in a descending order.

3.3 unsupervised and statistical evaluation

This section will mention some of the major approaches that has been
developed and considered in this work to evaluate and validate the
research objects in Chapter 1. In addition, text driven description pro-
cessing has been developed to describe clusters in a natural language
more sufficiently, as shown in Section 3.3.1.

GTA parameter validation is achieved by employing association rules
between clusters and GTA parameters, as presented in Section 3.3.2.

Finally, CC analysis is considered to find usage relation between
performance measures. However, this is discussed in Section 3.3.3.



3.3 unsupervised and statistical evaluation 17

3.3.1 Text driven description processing on clusters

Categorization on the different driving behaviors based on the three
condition types (usage, exterior and performance) is a major chal-
lenge in this work. Therefore, text driven description processing on
clusters is applied to interpret clusters more sufficiently. Explicitly, a
satisfactory cluster description could possibly be described as high
speed, medium cruise control usage and low braking pedal usage.

However, the method is based on defining class intervals Ic from
a min and max perspective on each feature vector X. The n (in this
case five) classes is defined as Very Low, Low, Medium, High and
Very High. The numeric values within the interval K ∈ (1, 2, 3, 4, 5)
is estimated by increasing coefficient xk, as mathematically described
in Equation 16.

xk =

K∑
k=1

Xmax −Xmin

n
(16)

The mean of samples from feature X that associates with cluster c
is then estimated. Furthermore, specific features within clusters are
then classified with following indicator function.

Ic =



Very Low Xmin 6 ĉ(i)x̂ < x1

Low x1 6 ĉ(i)x̂ < x2,

Medium x2 6 ĉ(i)x̂ < x3

High x3 6 ĉ(i)x̂ < x4

Very High x4 6 ĉ(i)x̂ 6 Xmax

In addition, clusters with low mean compared to the other clusters
within the same feature are likely to be classified as below Medium.

3.3.2 Association rule mining on GTA

One of the major challenge in this work is to evaluate measures in
an unsupervised fashion, which means that the idea is not to achieve
any type accuracy metrics, but rather discover reasonable patterns
in the data. Our purposed evaluation approach identifies patterns
between cluster labels and GTA parameters by using association rule
mining, which essentially is defined as rule-based machine learning
for mining relations between categorical data in large datasets.

Initially, the Apriori [1] algorithm is employed to extract frequent
item sets within the aggregated LVD to gain knowledge of the rela-
tionships within the data. Association rules are then identified using
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three typical parameters: confidence, support and lift. High confidence
implies that the given rule should be correct in most cases, high sup-
port implies that there should be many of the particular case, while the
lift tells us that the rule is not a coincidence. Generally, it is favourable
if all three parameters are high, although this is hardly ever the case in
a real world scenario such as the aggregated LVD, and it also depends
on what one is expecting to find. Classically, association rules are de-
fined by an antecedent that implies a consequence, such as X ⇒ Y.
Support is estimated as seen in Equation 17, where N is the number
of rules. Equation 18 and Equation 19 illustrates the confidence and
lift, respectively.

Support =
Freq(X, Y)

N
(17)

Confidence =
Freq(X, Y)
Freq(X)

(18)

Lift =
Support

Support(X)× Support(Y)
(19)

As previously mentioned, association rules are generally used to find
frequent combinations of items. Antecedents and consequences are
then constructed to build valid rules on the data itself. In this work,
association rules are combined with clustering to mine rules that
are associated with different clusters. Technically, various antecedents
will either describe GTA parameters or vehicle configurations that are
found in the LVD. Furthermore, the consequences include individual
clusters or cluster combinations, which is determined as different be-
haviors from the three conditional categories (usage, exterior and per-
formance). In other terms, clusters are defined as categorized behav-
iors and then combined with GTA parameters or vehicle configura-
tions to identify valid associations. Technically, a scenario is found in
Equation 20, where clusters parameters are the antecedents and GTA

are consequences.

CLUSTERp ⇒ GTAi (20)

Filtering procedures are then used to localize valid rules, as recently
discussed. The filter is defined as seen in following indicator function,
where γ, α, β and φ represents threshold parameters.

FAR ∈



length of itemset > γ Pass, else reject

support > α Pass, else reject

confidence > β Pass, else reject

lift > φ Pass, else reject
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The final rule distributions are then compared manually with respect
to each cluster. This approach will provide more knowledge on how
frequent types of driving behaviors align with the GTA parameters.

3.3.3 Evaluation on performance categories using statistics

Measuring drivers’ performances is one of the major challenge in this
work due to the nature of different environmental conditions. For
instance, vehicles that are driven with the same average speed and
average slope are only compared within this category. However, the
major task is to find why vehicles’ or drivers’ performances are better
or worse within specific categories. In general, usage (e. g.speed and
distance driven) parameters are compared with various FC categories,
such as high average FC or low average FC.

As mentioned in Chapter 2, vehicles’ FC in relation to other at-
tributes has been studied using CC. In this work, the Pearson CC (see
Equation 21) is considered to find linear relationship between e.g. av-
erage FC and usage features.

ρ =
∣∣∣cov(X, Y)
σxσy

∣∣∣ (21)

Notice that X and Y represents feature vectors, while σx and σy repre-
sents their respective variances. Additionally, function cov represents
the estimation of covariance between X and Y.

3.4 implementation

The machine learning algorithms in this work has been implemented
and evaluated using Python. This is a logical choice of programming
language due to the availability of leading, well-documented open
source libraries, such as scikit-learn1, mlxtend2, pandas3 and plotly4.
This allows for more extensive algorithm comparison.

1 https://scikit-learn.org/

2 http://rasbt.github.io/mlxtend/

3 https://pandas.pydata.org

4 https://plot.ly/python/

https://scikit-learn.org/
http://rasbt.github.io/mlxtend/
https://pandas.pydata.org
https://plot.ly/python/
https://scikit-learn.org/
http://rasbt.github.io/mlxtend/
https://pandas.pydata.org
https://plot.ly/python/




4
R E S U LT S

This chapter serves to present findings that has been evaluated and
validated throughout this work. All results presented in this section
are found using the entire aggregated LVD. However, for visualization
purposes, downsampling is applied in some figures. Challenges such
as cluster optimization, model selection and choice validation tech-
niques (automatic and manual) are also presented. More importantly,
results based on the research objectives mentioned in Chapter 1 is
illustrated in the following sections.

In Section 4.1, clustering outputs are introduced based on the differ-
ent conditional categories (usage, exterior and performance). Conse-
quently, driving behaviors are then defined from these clusters using
an automated text description method, which is based on clusters’
centroid. The clusters were then used to investigate the two main
research objectives a and b, which is presented in Section 4.2 and Sec-
tion 4.3, respectively.

Findings from objective a), presents the relation between GTA pa-
rameters and driving behaviors. In addition, association rule mining
was used to find these relations and only relevant rules are shown.

Results from objective b) are presented by evaluating CC between
FC and relevant features within driving behaviors (clusters) from each
of the three conditional categories.

4.1 driving behaviors on condition categories

As previously discussed, three different conditions are studied (usage,
exterior and performance). The data sections are clustered indepen-
dently with the best fitted model (full, spherical, tied and diagonal). The
number of clusters from each model is chosen independently for each
condition category. Primarily, the DBI is used as weighting factor to
determine both appropriate models and the number of components
within each model, as discussed in Section 3.2.1. This process is per-
formed automatically as seen in Figure 2.

It is found that three clusters is the optimal number for usage and
exterior, while the optimal number for performance is four. The pre-
ferred covariance matrix in each GMM was found to be the spherical
covariance matrices for the usage conditions and the tied covariance
matrices for the exterior and performance condition categories.

Relation between condition categories are illustrated in Figure 3,
where the flows represent population connections between usage, ex-
terior and performance category.

21
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U-A

Usage

U-B

U-C

Exterior
P-A

Performance

P-B

P-C

P-D

Figure 3: Illustration of how the vehicles are distributed among the condi-
tion categories (clusters).

A numerical of Figure 3 is shown in Table 2 (all itemsets with a sup-
port above 0.1), as the Apriori [1] algorithm was used to compute
these itemsets. A quantity of the cluster sets are further discussed in
Section 4.2 as they are used to discover associations between cluster
combinations and vehicle and driving performances (examples are
marked with bolded text).

Support Itemset

0.1397 U-B, E-A, P-D

0.1055 U-A, E-A, P-B

0.0691 U-A, E-A, P-C

0.0599 U-B, E-C, P-D

0.0552 U-C, E-A, P-C

0.0550 U-C, E-A, P-A

0.0532 U-A, E-C, P-B

0.0373 U-A, P-B, E-B

0.0367 U-A, E-C, P-C

0.0318 U-C, E-A, P-B

0.0273 U-B, E-B, P-D

0.0268 U-C, P-A, E-C

0.0258 P-D, E-A, U-C

0.0244 P-A, U-C, E-B

0.0243 U-C, E-C, P-C

0.0236 E-B, U-A, P-C

0.0233 E-B, U-C, P-C

0.0212 E-A, P-B, U-B

0.0204 P-D, U-A, E-A

0.0192 U-B, E-A, P-C

0.0144 U-C, E-C, P-B

0.0126 U-A, E-A, P-A

0.0125 U-C, P-B, E-B

Table 2: Frequent cluster combinations (all itemsets with a support above
0.1), extracted using the Apriori algorithm. Notice, the bolded sam-
ples are later discussed in the context of association rule mining.

Figure 4, Figure 5 and Figure 6 illustrate clusters on selected fea-
tures in the given condition category. Extraction is accomplished by
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weighting features using the DBI in one dimension and then select
features based on manual expertise, as discussed in Section 3.2.1.

Text driven description processing was used to simplify the evalu-
ation process on each cluster, as displayed in Table 3. As previously
mentioned in Section 3.3.1, five intervals are used to classify the clus-
ters, which are defined as Very Low, Low, Medium, High and Very
high. The text driven determinations describe the nature of each fea-
ture, while the numeric value represents the mean of each feature
within a specific cluster. For instance, clusters with decreased aver-
age speed are is more likely to be described as Very Low and Low,
rather than High and Very high.

The same features from Figure 4, Figure 5 and Figure 6 are de-
scribed in natural language as seen in Table 3.

Some of the most distinguished clusters within the usage condition
category is shown in Figure 4 and were selected based the DBI. From
these observations and Figure 4, trucks in cluster U-B are more likely
used for longer driven distances, due to the indication of high speed,
longer distance driven, higher cruise control usage, less braking pedal
usage and number of stops. Likewise, trucks in A-C and U-C with
lower speed, less distance driven, medium usage of cruise control,
more usage of brake pedal and more number of stops, is more likely
used for shorter routes and in more dense traffic.

As shown in Figure 5 and Table 3, vehicles within cluster E-B tends
to drive in a environment with lower slope and slightly medium ambi-
ent temperature compared to cluster E-A and E-C. This may indicate
that vehicles within cluster E-B with average gradient of 0.06%, are
more frequently driven on flat roads, compared to cluster E-A and
E-C with a gradient of approximately 1.3%.

Perceptibly, in Figure 6 and Table 3, four clusters were found with
distinguished FC. Cluster P-A represents a notable FC of approxi-
mately 80 liters per 100 km, while cluster P-B consumes around 40

liters per 100 km.
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Usage

Features U-A U-B U-C

SPEED Medium (60.78) High (66.61) Low (40.82)

RPM Very Low (860.94) Low (1019.24) Low (1225.02)

PERC_CRUISE_DIST Low (0.21) High (0.43) Medium (0.31)

PERC_BRAKE_DIST Low (0.05) Low (0.05) Medium (0.08)

PERC_COASTING_DIST Low (0.13) Low (0.13) Medium (0.2)

PERC_KICKDOWN_DIST Low (0.22) Low (0.21) Low (0.22)

PERC_DRIVE_ENGINE_ON_TIME Low (0.53) High (0.7) Medium (0.6)

PERC_PEDAL_TIME High (0.37) Low (0.24) Medium (0.35)

PERC_PTO_TIME Medium (0.26) Low (0.21) Low (0.19)

PERC_CLUTCH_TIME Low (0.17) Low (0.17) Medium (0.2)

NUMB_CLUTCH_100KM Medium (0.34) Medium (0.35) Medium (0.34)

NUMB_PARK_DIST_100KM Very Low (9.31) Very Low (7.09) Medium (16.91)

PERC_MAX_TRQ Medium (0.16) High (0.18) Medium (0.17)

PERC_COMP_DUTY_CYCLE Low (0.06) Low (0.07) Low (0.06)

DIST_DRIVEN_RATIO Low (443.97) Low (484.32) Very Low (262.76)

Exterior

Features E-A E-B E-C

PERC_MEAN_SLOPE High (1.31) Very Low (0.06) High (1.32)

OUTDOOR_TEMP High (19.58) Medium (18.01) Low (14.83)

Performance

Features P-A P-B P-C P-D

PERC_CRUISE_FUEL Medium (0.27) Low (0.17) Low (0.18) High (0.38)

PERC_DRIVE_FUEL Medium (0.69) Low (0.61) High (0.79) High (0.81)

PERC_PEDAL_FUEL Medium (0.31) Low (0.22) High (0.41) Low (0.2)

PERC_IDLE_FUEL Low (0.03) Low (0.02) Low (0.03) Very Low (0.02)

PERC_TOP_GEAR_FUEL Medium (0.46) Low (0.37) Medium (0.5) High (0.59)

NUMB_CLUTCH_SLIP_100KM Low (0.14) Low (0.13) Low (0.13) Low (0.13)

NUMB_CLUTCH_PLATE_WEAR_100KM Low (0.09) Low (0.09) Low (0.08) Low (0.07)

AMOUNT_OF_ASH_100KM Low (0.59) Low (0.49) Low (0.5) Low (0.49)

SOOT_LEVEL_100KM Very Low (9.59) Very Low (7.75) Very Low (6.65) Very Low (6.32)

AVG_FUEL_L_100KM High (79.33) Very Low (37.84) Low (44.83) Low (42.67)

Table 3: Text driven description processing of cluster sub-populations for
each feature from the usage, exterior and performance categories.
The classification is based on class intervals with five defined
classes; Very Low, Low, Medium, High and Very High. The numer-
ical values represents the mean of each feature that associates with
each cluster.
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Figure 4: Estimated clusters U-A, U-B and U-C from the usage condition
data. Interesting feature spaces are extracted using DB index and
manual expertise.
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Figure 5: Estimated clusters E-A, E-B and E-C from the exterior condition
data. Interesting feature spaces are extracted using DB index and
manual expertise.
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Figure 6: Illustration of performance behaviors P-A, P-B, P-C and P-D from
the performance condition data. Interesting feature spaces are ex-
tracted using DB index and manual expertise.

4.2 rule mining evaluation on gta parameters

Association rule mining is applied to find associations between GTA

parameters and driving behaviors, as discussed in Section 3.3.2. Var-
ious GTA parameters have been studied with respect to driving be-
haviors in each condition type, including transport cycle, topography,
ambient temperature and road condition. The selection is based on
manual expertise as previously discussed in Section 3.1.2.

Findings on validating the transport cycle GTA parameter with the
usage conditions are displayed in Table 4. Long-distance haulage (TC-
LONGD) is defined as the mean distance is more than 50 km be-
tween each pick-up/delivery, which associates with few number of
stops and high average speed. By studying the association between
these definitions and the driving behaviors (Figure 4 and Table 3),
it is very likely that a majority of the long-distance haulage trucks
(TC-LONGD), follow GTA recommendation. This is indicated in Ta-
ble 4 (row three and six) and Figure 7, long-distance haulage trucks
(TC-LONGD) in cluster U-A and U-B tends to have increased sup-
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port, confidence and lift, compared to other clusters. Moreover, this is
also shown in Figure 7 where the cluster U-B dramatically decreases
in TC-DIST and TC-CONST. Distribution vehicles (TC-DISTR) and
construction vehicles (TC-CONST) are rarely found (including low
confidence and lift) in cluster U-B. According to the GTA, distribu-
tion vehicles and construction vehicles should not be used for longer
routes, which is seen the be the case of typical vehicles in cluster U-
B. Likewise, it is hard to determine if either cluster U-A and U-C
generally associates with TC-CONST or TC-DISTR, as the rules are
relatively similar. A minor group of long-distance haulage trucks (TC-
LONGD), seems to break the GTA parameter rules, as they associate
with cluster U-C which generally represent trucks with low average
speed, increased number of stops and frequent clutch usage.
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Figure 7: Illustration of distance driven per day for various transport cycle
GTA parameters. The x-axis represents the distance in km.

Antecedents Consequents Support Confidence Lift

U-A TC-CONST 0.033 0.0858 0.9683

U-A TC-DISTR 0.1078 0.2804 1.1637

U-A TC-LONGD 0.2437 0.6339 0.9454

U-B TC-CONST 0.0067 0.022 0.2484

U-B TC-DISTR 0.0302 0.0992 0.4116

U-B TC-LONGD 0.2679 0.8788 1.3107

U-C TC-CONST 0.0489 0.1574 1.777

U-C TC-DISTR 0.1029 0.3312 1.3749

U-C TC-LONGD 0.1588 0.5114 0.7627

Table 4: Illustration of driving behaviors from the usage condition that as-
sociates with the transport cycle GTA parameter. The parameter de-
fine three different vehicle usage parameters, including construction
environments (TC-CONST), long-distance (TC-LONGD) and goods
distribution (TC-DISTR).
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In this work, three types of topography GTA parameters has been
studied. The parameters includes flat (T-FLAT), predominately flat
(T-PFLAT) and hilly (T-HILLY), detailed definitions are presented in
Section 3.1.2. Intuitively, explicit association rules has been extracted
between topography GTA parameters and clusters within the exterior
condition category. As illustrated in Table 3, vehicles within cluster
E-A and E-C tends to be driven in more varied sloping, compared
to cluster E-B. The maximum average mean slope gradient in cluster
E-A, E-B and E-C is found to be approximately 1.82%, 0.67% and
1.82%, respectively. From these observations it is very likely that the
majority of the general vehicle population is not breaking the upper
limit gradient rules, as they are defined for the QCX_TOPOGRAPHY
GTA parameter (see Section 3.1.2). However, the data lacks enough
detail to capture what the exact gradients a truck has drive in.

As shown in Table 5, the T-HILLY GTA parameter is infrequently
found in all clusters. Still, decent confidence are observed in all clus-
ters, especially in cluster E-B (row 4). According to other rules, cluster
E-A and E-C is frequent with T-PFLAT, while Cluster E-A is mainly
associated with T-FLAT. This implies that general vehicle populations
are not breaking any upper topography GTA rule limits.

Antecedents Consequents Support Confidence Lift

E-A T-HILLY 0.0066 0.0117 0.5806

E-A T-FLAT 0.1863 0.3315 1.0327

E-A T-PFLAT 0.3692 0.6569 0.9969

E-B T-HILLY 0.0096 0.0534 2.6552

E-B T-FLAT 0.0487 0.27 0.8412

E-B T-PFLAT 0.122 0.6766 1.0268

E-C T-HILLY 0.0039 0.0152 0.7568

E-C T-FLAT 0.086 0.3337 1.0398

E-C T-PFLAT 0.1677 0.6511 0.9881

Table 5: Illustration of driving behaviors from the exterior condition that as-
sociates with the topography GTA parameter. The parameter define
three different vehicle usage parameters, including flat (T-FLAT),
predominately flat (T-PFLAT) and hilly (T-HILLY).

However, the main objective of using topography GTA as a sales tool
is to optimize performance, service life and fuel economy. This insinu-
ates that a truck purchased with a hilly (T-HILLY) configuration, but
then mainly used on flat (T-FLAT) or predominately flat (T-PFLAT)
roads, may cause worse fuel economy since the truck, as a result of
GTA parameter is configured with a larger engine with higher fuel
consumption to be able to handle a higher gradient of slope suffi-
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ciently. Consequently, association between topography GTA parame-
ters and FC is therefore studied. Extraction on vehicle sub-populations
were considered to achieve environmental similarity, because FC is in-
fluenced by many environmental parameters. Thereby, populations
within Cluster U-C (low average speed) and E-B (low average slope)
are extracted before associated with GTA parameters. Various explicit
rules on performance condition categories and topography GTA pa-
rameters, is shown in Table 6. Interestingly, some vehicles that should
be used in hilly environments are instead used in Cluster U-C (low
average speed) and E-B (low average slope), which thereby cause in-
crease of fuel economy (row one). Although, the support is quite low
but the confidence and lift is very sufficient. Notice, Cluster P-A rep-
resents high FC.

Antecedents Consequents Support Confidence Lift

P-A T-HILLY 0.0134 0.0959 4.7632

P-A T-FLAT 0.0403 0.2886 0.8992

P-A T-PFLAT 0.086 0.6155 0.9342

P-B T-HILLY 0.0026 0.0091 0.451

P-B T-FLAT 0.0882 0.3041 0.9475

P-B T-PFLAT 0.1992 0.6868 1.0423

P-C T-HILLY 0.0025 0.0094 0.4651

P-C T-FLAT 0.0779 0.2951 0.9193

P-C T-PFLAT 0.1838 0.6956 1.0556

P-D T-HILLY 0.0016 0.0053 0.2644

P-D T-FLAT 0.1145 0.374 1.1654

P-D T-PFLAT 0.19 0.6206 0.9419

Table 6: Illustration of driving behaviors from the performance condition
that associates with the topography GTA parameter. Populations
within all performance conditions are extracted with hence to Clus-
ter U-C (low average speed) and E-B (low average slope). The pa-
rameter define three different vehicle usage parameters, including
flat (T-FLAT), predominately flat (T-PFLAT) and hilly (T-HILLY).

The ambient temperature GTA parameters are also considered in this
work. Two types of parameters are studied, including above (ATU-
VH) and below (ATU40) 40 degrees Celsius. Since the trucks are
mainly used in Sweden, it is very unlikely that any GTA rules are bro-
ken due to the rather cold climate. As shown in Table 7, no general
patterns of broken rules are found.
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Antecedents Consequents Support Confidence Lift

E-A ATU-VH 0.003 0.0053 1.1851

E-A ATU40 0.5591 0.9947 0.9992

E-B ATU40 0.1802 0.9996 1.0041

E-C ATU-VH 0.0014 0.0055 1.2351

E-C ATU40 0.2561 0.9945 0.9989

Table 7: Illustration of driving behaviors from the exterior condition that as-
sociates with the ambient temperature GTA parameter. ATU40 rep-
resents temperature below 40 degrees Celsius while ATU-VH rep-
resents above 40 degrees Celsius.

We also found it interesting to study various mixtures of itemsets to
discover interesting cluster combinations (see Figure 3 and Table 2)
which associates with GTA parameters. The rules were filtered by ex-
cluding antecedents and consequents consisting of fewer than three
items. Furthermore, rules with a support below 0.001 and a confi-
dence below 0.7 were also rejected. It was found that 22 rules fulfills
this constraint, as shown in Table 8. However, it was also necessary
to display rules that breaks the filters’ constraints, and therefore they
are represented by vertical dots in the table. As presented in Figure 3

and Table 2, driving behaviors within the red flow (Cluster U-B, E-
A and P-D) associates with RC-SMOOT, ATU40, TC-LONGD and
GCW60.0 (marked with red). This rule approximately captures 10%
of the total vehicle population, which implies that these behaviors
are commonly recognized with this GTA configuration. Cluster com-
bination Cluster U-A, E-A and P-D in the blue flow, was found to
not capture similar GTA parameters as the red rule (see confidence
and lift). As observed in the results, there are significant patterns be-
tween driving behaviors and GTA parameters. Figure 3 and Table 2,
provides more possible rules to study other than the rules that has
been discussed.
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Antecedents Consequents Support Confidence Lift

U-B, E-C, P-B RC-SMOOT, ATU40, TC-LONGD 0.0071 0.8305 1.5325

U-B, E-C, P-D RC-SMOOT, ATU40, TC-LONGD 0.0491 0.8187 1.5108

U-B, E-A, P-D RC-SMOOT, ATU40, TC-LONGD 0.1140 0.8157 1.5052

U-B, E-A, P-D ATU40, TC-LONGD, GCW60.0 0.1112 0.7955 1.4133

U-B, E-C, P-D ATU40, TC-LONGD, GCW60.0 0.0469 0.7824 1.3900

U-B, E-A, P-B RC-SMOOT, ATU40, TC-LONGD 0.0163 0.7690 1.4190

U-B, E-C, P-B ATU40, TC-LONGD, GCW60.0 0.0065 0.7618 1.3534

U-B, E-A, P-B ATU40, TC-LONGD, GCW60.0 0.0160 0.7569 1.3448

U-B, E-B, P-D ATU40, TC-LONGD, GCW60.0 0.0205 0.7509 1.3342

U-B, E-C, P-B RC-SMOOT, ATU40, GCW60.0 0.0064 0.7506 1.3515

U-B, E-A, P-D RC-SMOOT, ATU40, GCW60.0 0.1040 0.7445 1.3406

U-B, E-C, P-C RC-SMOOT, ATU40, TC-LONGD 0.0054 0.7418 1.3689

U-B, E-B, P-D RC-SMOOT, ATU40, TC-LONGD 0.0201 0.7381 1.3619

U-B, E-A, P-D RC-SMOOT, TC-LONGD, GCW60.0 0.1016 0.7268 1.5529

U-B, E-C, P-D RC-SMOOT, ATU40, GCW60.0 0.0434 0.7243 1.3042

U-B, E-B, P-D RC-SMOOT, ATU40, GCW60.0 0.0198 0.7238 1.3033

U-B, E-A, P-D RC-SMOOT, ATU40, TC-LONGD, GCW60.0 0.1008 0.7213 1.5492

U-B, E-A, P-B RC-SMOOT, ATU40, GCW60.0 0.0153 0.7207 1.2978

U-B, E-C, P-B RC-SMOOT, TC-LONGD, GCW60.0 0.0061 0.7184 1.5350

U-B, E-C, P-B RC-SMOOT, ATU40, TC-LONGD, GCW60.0 0.0061 0.7170 1.5398

U-B, E-C, P-D RC-SMOOT, TC-LONGD, GCW60.0 0.0425 0.7086 1.5140

U-B, E-C, P-D RC-SMOOT, ATU40, TC-LONGD, GCW60.0 0.0421 0.7026 1.5091

...
...

...
...

...
...

...
...

...
...

U-A, E-A, P-D ATU40, TC-LONGD, GCW60.0 0.0124 0.6092 1.0823

U-C, E-A, P-D ATU40, TC-LONGD, GCW60.0 0.0154 0.5948 1.0567

U-A, E-C, P-D RC-SMOOT, ATU40, TC-LONGD 0.0054 0.5897 1.0882

U-B, E-C, P-A ATU40, TC-LONGD, T-PFLAT 0.0015 0.5863 1.3389

U-A, E-B, P-C ATU40,GCW60.0, T-PFLAT 0.0138 0.585 1.1594

...
...

...
...

...

U-A, E-A, P-B ATU40, TC-LONGD, GCW60.0 0.0542 0.5138 0.9129

Table 8: Illustration of driving behaviors from all conditional categories that
associates with various types of GTA parameters. Notice, rules are
filtered based on item length (greater than three items), support
(greater than 0.001) and confidence (greater than 0.7). However,

4.3 vehicle performance evaluation

In this section, evaluation of various truck performances are pre-
sented. The purpose is to evaluation if there are some distinguished
driving patterns that perform worse than others. The majority of this
particular study is based on the examination of the FC between vari-
ous driving patterns. All findings in this section are based on defined
driving behaviors, as seen in Section 4.1.

Primarily, four combinations were studied with respect to vari-
ous aspects such as average speed and mean slope. From observa-
tions in Figure 3, the following combinations were considered C1 ∈
{U − B,E − B}, C2 ∈ {U − B,E −A,E − C}, C3 ∈ {U − C,E − B} and
C4 ∈ {U−C,E−A,E−C}. Consequently, the mean of various vehicle



32 results

populations within different cluster combinations is shown in Fig-
ure 8. Notice, displayed data is re-scaled with the classical min-max
normalization method.
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Figure 8: Illustration of mean of various features within different cluster
populations. Notice that the data is re-scaled with min-max nor-
malization approach.

Intuitively, evaluating how FC from different driving behaviors differ
is predicated on estimating the Pearson CC between average FC per
100km and all features within diverse cluster combinations (e. g.C1 or
C2). In addition, increased CC values tends to indicate stronger linear
relationships. Moreover, average FC within different performance con-
dition categories are measured independently with respect to each
feature, as displayed in Figure 9.
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Figure 9: Illustration of CC from various features within different cluster
populations. The CC is measured between each feature in the data
and average FC per 100 km.

Sub population C1 is generalized as mainly high average speed and
low mean slope. Apparently, in the context of usage patterns, Cluster
P-A (high average FC) is more correlated with percentage of clutch-
ing time than other performance clusters. Although, it was used less
frequently. Clutch slippage was found to be correlated with the in-
crease of FC (see Cluster P-A with respect to number of clutch per
100 km and number of clutch plate wear ratio per 100 km). However,
in the aspect of service life, this is a commonly known phenomena as
clutches are worn over time. Clusters with decreased FC, such as Clus-
ter P-C is highly correlated with cruising distance, which obviously
insinuates lower fuel usage.

Vehicles in environmental condition C2 that are categorized as de-
creased average speed low average mean (U-C and E-B) are also in-
vestigated. As expected, breaking, clutching, fuel in top gear and max
torque were found to be correlated with high FC for some vehicles
(Cluster P-A). Likewise, vehicle groups with low FC (e. g.Cluster P-C)
is generally correlated with cruising, coasting, kickdown and clutch-
ing.
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Group C3 corresponds to vehicles with low average slope and high
average speed. Vehicles with high FC (Cluster P-A) tends to have no
linear relationship with any features aside form max torque. Con-
trary, vehicles with decreased FC is found to be influenced by drives
with usage of cruise control which was also found to be used more
frequently.

The final combination (C4), portrays low average slope and high
average speed. In this scenario, trucks with increased FC is highly
correlated with revolution per minute and fuel in top gear.
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D I S C U S S I O N

In this work, the usage of trucks has been analyzed by the employ-
ment of machine learning and statistical algorithms. Various tech-
niques were tested before reaching the one used in the final model, on
which the results in Chapter 4 are based on. This chapter serves to dis-
cuss these results in two parts based on the two major research objec-
tives a) and b) from Chapter 1. Firstly, in Section 5.1, the results from
the GTA parameters analyzed in terms of behaviours are discussed.
This is followed by the discussion of the performance validation of
trucks belonging to different behaviours in Section 5.2.

5.1 gta parameters

While it cannot with absolute certainty be claimed that vehicles with
a certain GTA parameter is used accordingly, the data shows clear in-
dication that this is the case for the majority of the GTA parameters.
However, this is a limitation in the data used, rather than a fault in
the presented model. To further investigate in a more detailed fashion,
one would need access to GPS information. This would provide accu-
rate insights of how far the trucks travel between stops along with
its altitude information. This level of accuracy would be necessary
to properly classify if trucks are used as designed and configured.
As an example, whether trucks follow the TC-LONGD in GTA pa-
rameter X78X_TRANSPORT_CYCLE as seen in Section 3.1.2, cannot
be sufficiently explored, as the data used can only provide informa-
tion as detailed as how far a truck has travelled in total on a given
day. Thus, it lacks any form of information of how far trips has been
between deliveries and pick-ups. In a similar fashion, association be-
tween the QCX_TOPOGRAPHY GTA parameter rules and driving
behaviors (clusters) can not be completely guaranteed, as these mea-
surements of mean slope do not consider percentage of gradient at
the moment of driving, but rather an average over the lifetime of
the truck. However, the data contains sufficient detail to show clear
differences between trucks configured with different GTA parameters,
which is what is presented in the results.

5.2 performance evaluation

One of the major parts of this thesis was to address research objec-
tive b). Four different clusters in the performance condition were
studied. Furthermore, drivers’ and vehicles’ performances were ex-

35
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plored within numerous combinations of manual selected environ-
mental conditions (C1,C2,C3andC4). This type of action is reason-
able as vehicles needs to be evaluated in the same categorical nature
to obtain satisfactory conclusions. For instance, driving performances
cannot be compared between high speed vehicles and low speed vehi-
cles. Unfortunately, evaluation within the same vehicle configurations
such as GCW and engine type was not considered in this work, which
implies that the linear relation ship between each feature an FC per
100 km cannot be completely guaranteed. Another limitation in the
data is the lack of information of the cargo weight of the trucks. As a
result of this, one cannot with full confidence determine whether or
not a given truck is performing worse than the rest, considering that
the weight of a vehicle greatly impacts fuel economy.

However, clear performance differences were found in terms of FC

when only looking at vehicles from a specific usage and exterior be-
haviour, as displayed in Figure 8 and Figure 9. Evidently, high speed
vehicles (Cluster U-B) express more dissimilarities in terms of corre-
lation, than low speed vehicles (Cluster U-C).

5.3 related research and framework evaluation

Liang et al. [5], which was discussed in Chapter 2, aimed to find opti-
mal fuel economy of buses. The authors extracted driving behaviours
of mentioned buses using K-means. The problem with K-means is
that it is not very resistant to noise, which is often present in sensor
data. Another research [2] mentioned in Chapter 2 employs GMM to
find high-level track modes with satisfactory results. Likewise, one
of the major challenges in this work were to obtain satisfactory clus-
tering. We tested K-means initially, however, it did not sufficiently
capture driving behaviours and was heavily affected by outliers in
the data. Mathematically, the K-means algorithm tend to push its
centroid towards the outliers. Thus, in this work, GMM was chosen
as clustering technique due to its resistance to noise and the satis-
factory results presented in [2]. Technically, the reduction of noise
sensitivity is achieved by probabilistic assignment and therefore the
GMM is able preserve more dynamic shapes than hard clustering algo-
rithms like K-means. As previously mentioned, an interquartile range
method was used to eliminate outliers and thereby improve cluster-
ing. However, the interquartile range method is not always suitable
for non-Gaussian distributions, which is not guaranteed in the LVD.
This drawback is a major problem if new variances should be in-
troduced into the model or if existing explainable variances are ex-
cluded from the model (GMM). However, this difficulty is possible
to overcome by employing more advanced outlier detection mod-
els, such as Density-Based Spatial Clustering of Applications with
Noise (DBSCAN).
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In the context of association rule mining, the framework seem to
lack in terms of discovering distinguished itemsets in the consequents
section. Mathematically, association rule mining should consider this
challenge as the confidence estimation is normalized with respect to
antecedents (see Equation 18) and the lift measure is normalized with
respect to both antecedents and consequents (see Equation 19). How-
ever, this challenge is likely solved by employing stratified sampling
(pre-processing) with respect to the GTA classes. This approach could
possibly push the data to uniform state (GTA frequency), but as a
consequence would we loss a large scale of the existing variance.

In the context of relationship between driving features and FC, var-
ious features has been found to be related to the FC[7]. However, in
this work vehicles from the same environmental condition are mea-
sured with respect to performance clusters. Evidently, this procedure
enables evaluation on vehicles’ performances, as presented in Sec-
tion 4.3.

Substantial studies on finding relations between vehicles’ configu-
rations and driving behaviors are rarely found, especially consider-
ing finding relations on parameters similar to GTA. Although, it has
has previously been found that ARI is an effective supervised method
when measuring vehicles’ track modes, as discussed in Chapter 2.

Regardless, we found that applying association rule mining on cat-
egorized clusters and GTA parameters is a sufficient method to mea-
sure GTA parameters validity.
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C O N C L U S I O N

This work has explored how Volvo trucks are used by analyzing driv-
ing behaviours described by clusters. To aid the objectives, numer-
ous high-level features were constructed to describe the usage of the
trucks in a more detailed manner. This proved both time consuming
and difficult. These manually crafted features, were divided into three
condition categories, usage, exterior and performance, each of which
were individually clustered by the employment of a GMM to extract
driving behaviours. An automated text-driven description was devel-
oped for the clusters to aid the evaluation process. Said evaluation
process was divided into two separate parts to answer the research
objectives a) and b) from Chapter 1. It was found that the majority
of the trucks are indeed seemingly used as intended in terms of GTA

configuration. This insinuates that the purposed framework, aggre-
gation followed by cluster categorization and then finally evaluation
using association rule mining is a sufficient approach to measure GTA

validity.
We also concluded that cluster combination Cluster U-B, E-A and

P-D that associated with RC-SMOOT, ATU40, TC-LONGD and
GCW60.0 was found to be the strongest relation between driving be-
haviors and GTA parameters. However, we also found a major issue
with our approach which causes the framework to not identify distin-
guished itemsets, as discussed in Section 5.3.

Furthermore, trucks from the various behaviours of the usage and
exterior categories had quite disperse performance in terms of fuel
economy. This is influenced by two major factors; the weight of the
truck and the actual driving style of the driver, both of which greatly
impacts fuel economy. Nevertheless, impact patterns from usage and
performance conditions between high and low FC was found to be
evident, as obvious disparities in linear relationships (CC) was discov-
ered.

As a future research, it would be interesting to explore a similar
approach with the addition of GPS information as this would provide
greatly improved insights in the usage of the trucks. This would allow
the construction of features that further capture the driving patterns
in a more detailed fashion, than the features that were constructed in
this work. Another future research would be to develop a framework
that automatically reconstruct the features that has been used in this
work. However, this is quite challenging as the feature engineering
performed in this work has been done using human expertise. As
mentioned before, FC is greatly affected by the vehicles’ weight and
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the LVD only contains GCW rating. Thus, although difficult to collect, it
would be interesting to include actual weight information in a future
study.
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Abstract—Trucks are designed, configured and mar-
keted for various working environments. There lies
a concern whether trucks are used as intended by
the manufacturer, as usage may impact the longevity,
efficiency and productivity of the trucks.

In this paper we propose a framework that aims to
extract costumers’ vehicle behaviours from Logged Ve-
hicle Data (LVD) in order to evaluate whether they align
with vehicle configurations, so-called Global Trans-
port Application (GTA) parameters. Gaussian mixture
model (GMM)s are employed to cluster and classify
various vehicle behaviors from the LVD. Rule-based
machine learning (RBML) was applied on the clusters
to examine whether vehicle behaviors follow the GTA
configuration.

Particularly, we propose an approach based on study-
ing associations that is able to extract insights on
whether the trucks are used as intended. Experimental
results shown that while for the vast majority of the
trucks’ behaviors seemingly follows their GTA configu-
ration, there are also interesting outliers that warrant
further analysis.

Keywords: Machine Learning, Clustering, Usage Be-
haviors, Association Rule Mining, Gaussian Mixture
Models.

I. Introduction
The demand on understanding consumers’ behaviors

has dramatically increased in the recent years. Particu-
larly, studies within the vehicle industry is already known
to address tasks like fuel economy, track-mode prediction,
maintenance prediction and etc.

Vehicles are designed and produced for specific types
of usage and particular external conditions. Typically, a
general specification language is required to make sure the
product meets the customers’ needs in terms of vehicle

configurations, maintenance plans and additional services.
This work aims to gain deeper market understanding and
better market position by recognizing vehicle behavior
patterns of Volvo trucks1 using machine learning, with
the purpose of studying whether a given truck is used
as intended. Such knowledge is beneficial for increasing
the longevity of trucks, since the configuration of the
trucks is always optimized for its expected purpose. If a
truck is not used as marketed and designed, it will likely
incur increased operating costs due to, e.g., higher Fuel
Consumption (FC) or parts failing prematurely.

Two types of data sources will be considered to study
relations between vehicle behaviors and vehicle market
parameters.

The first data source, so-called Logged Vehicle Data
(LVD), is logged continuously from sensor data that has
been accumulated throughout the lifetime of Volvo trucks.
This data is collected at irregular intervals when the
vehicle visits an authorized workshop, and a subset of it is
communicated through the telematics system. Intuitively,
this data is used to extract so-called vehicle behaviors, as
later discussed.

The categorical part of the data contain vehicle market
parameters, in this case a Global Transport Application
(GTA) framework used by Volvo Group2, which extends
earlier Global Truck Application [4]. This GTA defines a
number of parameters that approximate expected vehicle
behavior patterns and conditions under which the vehicle
will be operated. These parameters include Gross weight

1https://www.volvotrucks.com
2https://www.volvogroup.com/



combination, Transport cycle, Road condition, Topography
and Ambient temperature. Further on, these parameters
are also used to ensure that operations (e.g. management,
engineering and sales) within the organization are prac-
ticed the same way. From a sales perspective, the dealers
utilize these parameters to suggest the optimal vehicle
specifications to fulfill customers’ needs. If implemented
correctly, GTAs maximizes productivity and profitability
with the lowest potential production, service and warranty
cost.

However, there lies a major concern whether costumers
actually follow this GTA recommendation in practice.
Consequently, the guiding contribution of this study is
the following: This research embrace an effective follow-
up costumer approach by extracting insights into whether
vehicles are used as intended, by discovering interesting
relations between vehicle behaviors in the LVD and the
vehicle marketing parameters (GTA).

To successfully address this challenge, clustering the
LVD is necessary to aid the evaluation of vehicle behaviors
as these behaviours are primarily unknown. In fact, by
utilizing clustering it is possible to categorize numerical
data, while at the same time define vehicle behaviors by
studying clusters’ centroids. The idea is to define usage
behaviors from clusters and then measure how the categor-
ical representation of clusters associate with GTA parame-
ters. Clearly, measuring implies how frequently and likely
categorical representation of clusters relates with the GTA
parameters. Typically, achieved by estimating so-called
association rules using RBML. In addition, by studying
vehicle behaviors from clusters and the association rules
could possibly provide an insight of the vehicles’ behaviors
and performances and capture if costumers follow the GTA
recommendation.

Substantially, as the GTA parameters describe different
driving and transport conditions, it is necessary to divide
vehicle behavior conditions (described by clusters’ cen-
troids the the LVD) in a similar manner, as in the GTA.
Specifically, the features within the LVD are divided into
three different categories; usage, performance and exterior
conditions, in which all of them describe a vehicle behavior
(see Figure 1). The three mentioned usage categories
are described as follows: Usage conditions represents at-
tributes that are mainly influenced by the driver/operator,
such as average distance driven, percentage of distance
driven using cruise control and percentage of distance
driven applying the brakes. Performance conditions in-
cludes attributes that describe the vehicle efficiency, which
is primarily related to e.g. clutch slippage, average FC and
percentage of fuel consumed using cruise control. Finally,
Exterior conditions are not influenced by the driver, nor by
the vehicle itself. Instead, these conditions are describing
environmental attributes of where the vehicle has been
used. Typical attributes of this kind are ambient temper-
ature and slope.

The remainder of this paper is structured as follows.

LVD

UsagePerformance Exterior

ClusteringClustering Clustering

B1 B2B1 B2 B1 B2

Data preparation

Clustering

Behaviours

Fig. 1: Proposed method to divide the LVD into three condi-
tional categorize; usage, performance and exterior.

Firstly, in section II the related work within this subject is
explored and evaluated to asses some of the challenges that
are present. Secondly, in section III, the methodological
approach based on findings from both section II and ex-
perience is described. This is followed by the presentation
of the results attained in section IV. Lastly, the results and
parallels on other studies are discussed in section V, and
followed by the conclusions and future work in section VI.

II. Related work
In recent years, numerous researches [2][2][8] has inves-

tigated various data science approaches to extract and in-
terpret driving behaviors from streamed data or gathered
logged vehicle data. However, these studies do not concern
the idea of understanding behavior patterns in relation to
whether the vehicles are used as designed or marketed.

Recently, a comprehensive study of driving behaviors of
Plug-in Hybrid Electric Buses (PHEBs) were conducted by
Liang et al. [7]. The novelty of the paper is the optimiza-
tion of the fuel economy for various driving behaviors using
combined power sources (i.e. hybrid vehicles). The study
also employs engineering knowledge on the powertrain to
optimize the efficiency of the torque. Several aggregated
features are used to describe driving behaviors between
fixed routes. Some of the features that describe behaviors
are significant for this work, including average speed, stan-
dard deviation of speed, average acceleration, standard
deviation of acceleration, number of stops and average
deceleration. These driving behaviors are extracted by em-
ploying K-means on both logged and streamed data, where
the optimal number of clusters on the total variance is
measured in a unsupervised manner using Davies-Bouldin
Index (DBI). Basically, the index measures similarities on
intra-clusters normalized by the differences between inter-
clusters.

Walnum and Simonsen [13], in collaboration with a
censored Norwegian truck transport company, target inter-
esting driving patterns. For instance, patterns influenced
by the driver include, a) percentage of driving time per day



spent using cruise control, b) percentage of driving time
per day spent driving in highest gear, and c) percentage of
driving time per day spent using an automatic gearshift.
Other behaviors that are not directly influenced by the
driver are also mentioned, e.g., d) a dummy indicating
whether the trip was made in the winter season, which in
the paper is the period from December 1 to March 31.

Rui and Srdjan [12], summarized different driving be-
haviors and prediction methods collected from several
studies. They found that average speed is the most fre-
quently used behavior among approximately 30 numerical
features. However, the research was conducted on Hybrid
Electric Vehicles (HEV), where Global Positioning System
(GPS) based algorithms and stochastic Markov chain algo-
rithms is used most frequently. Clustering approaches are
also extensively used when no GPS data. Carpatorea et al.
[3] has analyzed relation between driver behavior and FC.

Functionality of the vehicle is another aspect that is
either directly or indirectly influenced by driving behavior.
Prytz et al. [10], studied prediction methods for repairs
of air compressors on vehicles, by utilizing maintenance
datasets. The researchers found that their methods can
outperform human experts. The study also references
several approaches to attack this maintenance predictions,
with everything from expert rules to data driven models.
Conveniently, they are using the same or at least similar
datasets to the ones that is used in this work, e.g., LVD
and Volvo Service Records (VSR). Furthermore, in the
mentioned research, the authors use a Random Forest
Decision Tree as classification model together with two
feature selections models. Fan et al. [5] investigate how
features suggested by experts can be combined with ma-
chine learning approaches for predictive maintenance.

Bougueliaa et al. [2], introduced a method which can
essentially localize track modes. Typically, the modes are
defined as either highway or heavily trafficked routes. They
have found that complex environment extraction can be
accomplished by processing the data stream with an aggre-
gating technique. This is followed by feature identification
and selection. Clusters are then obtained by employing a
GMM. The model is trained by utilizing the Expectation-
maximization (EM) algorithm. Bayesian tracking is then
used to improve the parameters of the good clustering
models. Finally, the clusters are then evaluated using
various unsupervised evaluation measurements, including
Adjusted Rand Index (ARI) [6] and Silhouette Coefficient
(SC) [11].

Another study within the area of driving segment clus-
tering aims to recognize traffic conditions [8]. Basically,
data was gathered from various driving cycles and then
fitted into a K-means model, from which clusters was
obtained. Their traffic recognition system was found to
achieve an accuracy of 87%. In the context of studying
performance efficiency such as FC, Correlation Coefficient
(CC)s were used to find linear relationship between vehicle
usage features and FC. However, no evaluation between

better and worse driving patterns was studied, which will
be considered in this work. Although, relation between
driving behaviors and FC has been investigated in an
another research [9], which were conducted by the same
authors. Description of driving cycles were obtained by
employing similar clustering (K-means) approach. The
authors found that FC, C0 emission, HC emission, N0x
emission were influenced by various driving cycles.

Altogether, classical clustering models such as K-means
and GMMs has been found to be commonly used when
extracting driving behaviors. Furthermore, unsupervised
evaluation methods (DBI, SC [11] and ARI [6] )were also
regularly employed to obtain distinguished clusters.

III. Method
The primarily objective of this research is to study

associations between driving behaviors and vehicle con-
figurations (in this case GTA). To fully address these
challenges and explore how the trucks are used, we pro-
pose an approach consisting of three main modules, Data
preparation, Clustering and Unsupervised evaluation all of
which is displayed in Figure 2.

Initially, the Data preparation module (discussed in
subsection III-A) applies data pre-processing on the nu-
merical LVD and categorical GTAs. Briefly speaking, the
pre-processing on the LVD includes time-series conversion
followed by feature aggregation to describe behaviors more
explicitly. Independently, cleaning is employed on the GTA
parameters to mark missing data. Secondly, the Clustering
module (presented in subsection III-B), applies GMMs to
compute clusters from the aggregated LVD in each of the
conditional categories (usage, exterior and performance).
Finally, the Interpreting Associations module describe ve-
hicle behaviors (see subsubsection III-C1) from clusters’
centroid, followed by studying (see subsubsection III-C2)
associations between behaviors (clusters) and vehicle con-
figurations (GTA parameters).

Methods within the main approach in this work has
been implemented using Python. Well-documented open
source libraries has been used, including scikit-learn3,
mlxtend4, pandas5 and plotly6.

A. Data preparation
In this section, the Data Preparation module is pre-

sented. It consists of two independent pre-processing com-
ponents: the first is the pipeline on the numerical LVD
data, and the second is selection of the categorical GTA
parameters.

1) LVD preparation: As previously mentioned, the LVD
is defined as continuous logged sensors data.

A major challenges in this study is to extract features for
describing driving behaviors in a manner which are similar

3https://scikit-learn.org/
4http://rasbt.github.io/mlxtend/
5https://pandas.pydata.org
6https://plot.ly/python/
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Fig. 2: Approach flowchart includes three modules; Data prepa-
ration, Clustering and Unsupervised evaluation.

to the approximated behaviors in the GTA. However, this
is addressed by five pre-processing steps; time-series con-
version, aggregation, outlier detection, interpolation and
scaling.

As the raw LVD mostly consists of cumulative features,
they are converted into non-cumulative time-series by
calculating the difference between two subsequent data
readouts, as seen in Equation 1. Term X represents the
feature and t denotes the readout index.

∆Xt+1 = Xt+1 −Xt (1)

As mentioned earlier, feature aggregation is needed to
describe driving behaviors in a corresponding manner as
found in the GTA. To this end, the time-series attributes
are used to craft features in a higher degree, which is done
manually using human expertise. For instance, average
speed is calculated as shown in Equation 2.

∆Xdistance

∆Tdrive
(2)

Where ∆Xdistance is the distance driven between the
readouts and ∆Tdrive is the time spent in drive mode
between the readouts. A full description of all features that
has been craft and are considered in this work is shown in
Table I.

Feature Description

Usage
Average speed Distance driven divided by time driven
RPM Number of engine revolutions divided by engine time
Percentage of cruise distance Distance driven using cruise control divided by distance driven
Percentage of coasting distance Coasting distance divided by distance driven
Percentage of brake distance Break distance divided by distance driven
Percentage of kickdown distance Kickdown distance divided by distance driven
Percentage of driving time Time driven divided by engine time
Percentage of pedal time Pedal time driven divided by driving time
Percentage of PTO time PTO time divided by driving time
Percentage of clutch time Clutch time divided by driving time
Number of clutches Number of clutches divided by 100 km
Number of parks Number of parks divided by 100 km
Maximum torque Maximum clutch torque, represented in percentage
Compressor duty cycle
Distance driven ratio Total distance driven divided by the number of days since last readout

Exterior conditions
Mean slope Average mean slope, represented as gradient percentage
Average outdoor temperature Average outdoor temperature in degrees Celsius

Performance conditions
Average FC Average FC in litres per 100 km
Percentage of cruise fuel Percentage of fuel consumed using cruise control
Percentage of drive fuel Percentage of fuel consumed while driving
Percentage of pedal fuel Percentage of fuel consumed with accelerator pedal pushed down
Percentage of idle fuel Percentage of fuel consumed in idle
Percentage of fuel in top gear Percentage of fuel consumed in the top gear
Clutch number of slips ratio Number of clutch slips per km travelled
Clutch plate wear ratio Clutch plate wear per km travelled
Amount of ash Amount of ash divided by 100 km
Soot level Soot level divided by 100 km

TABLE I: Full description of all features which is
considered in the clustering model.

The aggregated LVD is found to contain plenty of outliers
and NaNs, which may be caused by sensor disturbance
and invalid mathematical operations such as division by
zero. Data values outside the tenth and 90:th percentile
are considered outliers and replaced with NaN values.
Subsequently, NaN values are then replaced with new
artificial values using linear interpolation to avoid loss of
data.

As the variances from various features differs, the clas-
sical Z-normalization method is used to provide equal
contribution to the clustering model (GMM).

2) GTA parameter preparation: In this section, repre-
sentations of the GTA parameters are introduced in detail,
and followed by data-processing and selection.

Volvo Trucks defines GTA parameters with the purpose
to receive feedback from sales or other organizations on
the vehicles’ specifications to further develop aspects of
the vehicle itself, which is of course beneficial in long-
term run. As previously mentioned, each GTA parameter
contains categorized classes, which describe different types
of vehicle behavior scenarios. Ultimately, various combina-
tions of classes from different GTA parameters will specify
a constructed truck. Five GTA parameters are used in
this work. Gross combination weight, which describes the
maximum weight allowed of a rigid vehicle, contains twelve
classes with different weight ranges from 32 to 64 tons.
Transport cycle, which discloses the vehicles’ transport
cycle, includes three classes: whether the vehicle should
be used for distributing goods, for long-distance haulage
or in construction environments. Topography, whether
the vehicle is mostly used on flat, predominately flat or
hilly road. In particular, the Topography together with



the Gross weight combination parameters determine the
vehicles’ powertrain specifications, but it is also used to
optimize several aspects, including performance, service
life and fuel economy. Road condition, whether the vehicle
is mostly used on smooth or rough roads. Finally, Ambient
temperature describes whether the vehicle is supposed to
be used above or below 40 degrees Celsius.

B. Clustering on LVD
In this study, GMM is considered to be employed as

clustering model, majorly due to it is not sensitive to noise
as centroid clustering algorithms. In addition, centroid
clustering techniques such as K-means are sensitive to a
larger scale of noise, which is frequent in the aggregated
LVD. Consequently, GMMs are probabilistic models and are
extensions of the K-means, in which clusters are modeled
by Gaussian distributions. This implies that clusters are
not only modeled by the mean, but also by a covariance
matrix in which it describes the nature of its ellipsoid
shape. The GMMs are fitted by maximizing the likelihood
of the observed data using EM algorithm. Mathematically,
GMMs are described by the probability distribution, as
shown in Equation 3. The size, mean and variance of a
cluster (c) is signified by πc, µc and σc, respectively.

p(x) =
∑

c

πcN (x|µc, σc) (3)

In this work, Multivariate GMMs are considered, as
mathematically described in Equation 4. The mean vector
µ has a fixed length n as the number of features in each
conditional category (usage, exterior and performance.
Likewise, the n by n covariance matrix is characterized
as Σ.

N (x|µ,Σ) = 1
(2π)k/2

1
|Σ|1/2 exp{−

1
2(x− µ)T Σ−1(x− µ)}

(4)
The second order mean µ̂, is estimated in each feature

vector µ, as algebraically seen in Equation 5.

µ̂ = 1
m

∑

i

x(i) (5)

Furthermore, the covariance matrix of each feature is
achieved by Equation 6. Technically, m represents the
mean from each sample i in each vector feature.

Σ̂ = 1
m

∑

i

(x(i) − µ̂)T (x(i) − µ̂) (6)

The EM algorithm in Equation 7 is employed to assign
data points to each cluster. Initially, the algorithm starts
(E-step) with the selected number of clusters, with size
πc, mean µc and variance σc. This is achieved by iterating
over each sample xi and estimate the probability γi,c for
each cluster c. Moreover, the probability (γi,c) is used as
weight to see if data sample belong to cluster c. Notice,

terms in sum Σc′=1 (all clusters) are defined to normalize
the probability to one.

γi,c = πcN (xi|µc,Σc)∑
c′=1 πjN (xi|µc′ ,Σc′) (7)

The second part (M-step) of the EM algorithm essen-
tially utilizes the computed probabilities to update its
estimates (πc, µc, mc and σc) for each component.

Each EM iteration increases the log-likelihood, which es-
sentially repeats until convergence, as seen in Equation 8.

logp(X|π, µ,Σ) =
∑

c=1
log{

∑

c′=1
πc′N (xc|µc′ ,Σc′)} (8)

As previously mentioned, covariance matrices describe
different shapes of ellipsoids. However, in this work four
types of covariance matrices (Σ) are considered including
full, spherical, tied and diagonal. In addition, full signifies
that all covariance matrices share the same shape, but they
can together adopt to any shape and position; diagonal
is always oriented along the coordinate axis; tied always
have the same shape, but it can adapt to anything; and
finally, spherical is formed as a spherical contours in high
dimensional space.

To find the optimal number of clusters and covariance
matrices, we employ the DBI measure. Technically, this
challenge is addressed by minimizing the DBI from by iter-
atively increasing the number of clusters, as k ∈ (2, kmax).

The DBI is used as cost function which essentially
measures the ratio of relationship between inter-clusters
(Equation 9) and the outer-clusters distances (Equa-
tion 10), as seen in Equation 11. The cluster center
points represents vi and vj and x is termed to define all
individuals in cluster i.

s(ci) = 1
|ci|

∑

x∈ci

‖x− vi‖ (9)

d(ci, cj) = ‖vi − vj‖ (10)

Costi = min
j=1,2,...,k

Costij = min
j=1,2...,k

s(ci) + s(cj)
d(ci, cj) (11)

Smaller DBI indicates more separated and dense clusters
while high values mean indistinguishable clusters. Tech-
nically, the DBI index drops when the numerator (outer-
clusters distances) increases or the denominator (inter-
clusters distances) decreases (see Equation 11).

C. Unsupervised evaluation

The main contribution of this work is to extract insights
of associations between vehicle behaviors and vehicle mar-
ket parameters to gain more insight in the vehicle sales and
marketing area.



Clusters in high dimensional data are generally hard to
evaluate and understand even when visualized. In sub-
subsection III-C1, we propose a method that essentially
defines vehicle behaviors based on clusters’ centroids to
simplify the evaluation process.

Extracting insights of how behaviors which relate to
vehicle configurations is addressed by employing RBML
between categorical representations of clusters and GTA
parameters to create association rules. Furthermore, these
rules are later studied the gain insight on relations be-
tween vehicle behaviors and vehicle market parameters,
as presented in subsubsection III-C2.

1) Define vehicle behaviors: In this section, we pur-
pose an unsupervised evaluation method on describing and
defining vehicle behaviors by studying clusters’ centroids.
Intuitively, the aim is to extract insights on how vehicle
behaviors distinguishes between clusters.

Initially, this challenge is addressed by fitting a cluster’s
centroid into an interval (numeric values within a feature)
with five estimated ranges, as seen in Table II. Moreover,
the five ranges are labeled as following; Very Low, Low,
Medium, High and Very High. Respectively, min and max
represents the start and end-point of each feature.

Label Range

Very Low Xn
min ≤ ĉ

(i)
x̂ < x1

Low x1 ≤ ĉ(i)
x̂ < x2

Medium x2 ≤ ĉ(i)
x̂ < x3

High x3 ≤ ĉ(i)
x̂ < x4

Very High x4 ≤ ĉ(i)
x̂ ≤ Xn

max

TABLE II: Description of how vehicle behaviors are defined by
five possible ranges.

Technically, ranges are estimated by employing Equa-
tion 12, where xk defines the threshold on each range,
which is achieved by iteratively (k sum every computation
together. In addition, this process is applied on n features
(X) with respect to i clusters c.

xk =
K∑

k=1

Xn
max −Xn

min

5 (12)

2) Rule-based machine learning: One of the major chal-
lenge in this work is to evaluate measures in an unsu-
pervised fashion, which means that the goal is not to
achieve any type accuracy metrics, but rather discover
reasonable patterns in the data. Our purposed evaluation
approach identifies patterns between cluster labels and
GTA parameters using association rule mining, which is
defined as RBML for mining relations between categorical
data in large datasets. Generally, association rules are
used to find the frequent combination of item-sets, and
defined by an antecedent that implies a consequent, such

as X ⇒ Y . To point this in more detail, association
rules are constructed based on the Apriori algorithm[1],
that basically is employed to extract frequent itemsets
on clusters and GTA parameters gain knowledge of the
relationships within the data.

A scenario is displayed in Equation 13, where clus-
ters are defined as the antecedents (ItemsetA) and GTAs
ItemsetC are consequences.

ItemsetA ⇒ ItemsetC (13)

In this study, association rules are identified using three
typical parameters: confidence, support and lift. Support is
estimated by Equation 14, which describes how frequent a
rule is found in the data. Term X is defined as antecedents,
Y consequences and N is the number of rules in the data
(see Equation 13). High support implies that there should
be many of the particular case. High confidence implies
that the given rule should be correct in most cases, while
the lift tells us that the rule is not a coincidence. Generally,
it is favourable if all three parameters are high, although
this is hardly ever the case in a real world scenario such
as in the GTA and the LVD. Equation 15 and Equation 16
illustrate the confidence and lift, respectively.

Support = Freq(X,Y )
N

(14)

Confidence = Freq(X,Y )
Freq(X) (15)

Lift = Support

Support(X)× Support(Y ) (16)

As mentioned earlier, association rules are constructed
using the Apriori algorithm and the previous mentioned
equations. Technically, various antecedents will either de-
scribe vehicle configurations (in this study GTA param-
eters). Furthermore, the consequences include individual
clusters or cluster combinations, which is determined as
different behaviors from the three conditional categories
(usage, exterior and performance). In other terms, clusters
are defined as categorized behaviors and then combined
with GTA parameters (vehicle configurations) to identify
valid associations rules.

The Apriori algorithm regularly returns low frequent
itemsets in large scale databases. Consequently, as the pur-
pose of this study is to create insight of general patterns,
is filtering needed to exclude noisy association rules, which
is either invalid due to few number of items in the rule,
low support or unreliable rules (low confidence or low lift).

FAR ∈





Number of items in itemset > γ Pass, else reject

support > α Pass, else reject

confidence > β Pass, else reject

lift > φ Pass, else reject
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Fig. 3: Illustration of how the vehicles are distributed

(clusters) among the condition categories

In fact, the filter procedure is defined as seen in following
indicator function, where γ, α, β and φ represent threshold
parameters. Subsequently, rules below these thresholds
will be rejected.

IV. Experimental Evaluation and Results
This section serves to present findings on, as introduced

in the section I. All insights are found using the entire LVD
and GTA.

The LVD contains approximately 180000 samples from
around 1000 vehicles. Furthermore, the data includes 27
features after aggregation and the GTA contains five fea-
tures that hold different GTA parameters.

In subsection IV-A, we start to introduce findings on
driving behaviors from the clustered data. In subsec-
tion IV-B, we finally present interesting vehicle patterns
that are found from association rules.

A. Extracting insights on vehicle behaviors
As previously discussed, three different conditional cat-

egories (usage, exterior and performance) within the LVD
are studied. The data categories are clustered indepen-
dently with the best fitted GMM (full, spherical, tied and
diagonal). The number of clusters from each model is cho-
sen independently for each of the conditional categories,
primarily by using the DBI as weighting factor, however,
this is further discussed in subsection III-B.

It is found that three clusters is the optimal number
usage and exterior, while the optimal number for perfor-
mance is four. The preferred covariance matrix in each
GMM was found to be the spherical covariance matrices
for the usage conditions and the tied covariance matrices
for the exterior and performance condition categories.

Relations between condition categories are illustrated in
Figure 3, where the flows represent vehicle distributions
between usage, exterior and performance category.

A numerical of Figure 3 is shown in Table III (all
itemsets with a support above 0.1), as the Apriori [1]
algorithm was used to compute these itemsets. A quantity

Support Itemset

0.1397 U-B, E-A, P-D
0.1055 U-A, E-A, P-B
0.0691 U-A, E-A, P-C
0.0599 U-B, E-C, P-D
0.0552 U-C, E-A, P-C
0.0550 U-C, E-A, P-A
0.0532 U-A, E-C, P-B
0.0373 U-A, P-B, E-B
0.0367 U-A, E-C, P-C
0.0318 U-C, E-A, P-B
0.0273 U-B, E-B, P-D
0.0268 U-C, P-A, E-C
0.0258 P-D, E-A, U-C
0.0244 P-A, U-C, E-B
0.0243 U-C, E-C, P-C
0.0236 E-B, U-A, P-C
0.0233 E-B, U-C, P-C
0.0212 E-A, P-B, U-B
0.0204 P-D, U-A, E-A
0.0192 U-B, E-A, P-C
0.0144 U-C, E-C, P-B
0.0126 U-A, E-A, P-A
0.0125 U-C, P-B, E-B

TABLE III: The most frequent cluster combina-
tions, extracted using the Apriori al-
gorithm.

of the cluster sets are further discussed in subsection IV-B
as they are used to discover associations between cluster
itemsets and vehicle behaviors.

The description method as discussed in subsubsec-
tion III-C1 was found to sufficiently visualize similarities
and dissimilarities between various clusters, as seen in
Table IV. Importantly, a vehicle behavior is defined as the
combination of labels in each column. For instance, in U-C,
the behavior is defined as Medium Speed, Very Low RPM,
Low Percentage of Cruise Control and so forth. Notice that
the numerical values represent clusters’ centroids (means).

B. Interpreting association rules
Association rule mining is applied to gather insights of

associations between GTA parameters and vehicle behav-
iors, as discussed in subsubsection III-C2. To clarify, a
vehicle behavior is defined by the combinations of labels
in each cluster (column), as shown in Table IV.

Various GTA parameters have been studied with respect
to vehicle behaviors in each conditional type. Specifically,
the considered GTA parameters include Gross weight com-



Usage
Features U-A U-B U-C

SPEED Medium (60.78) High (66.61) Low (40.82)
RPM Very Low (860.94) Low (1019.24) Low (1225.02)
PERC CRUISE DIST Low (0.21) High (0.43) Medium (0.31)
PERC BRAKE DIST Low (0.05) Low (0.05) Medium (0.08)
PERC COASTING DIST Low (0.13) Low (0.13) Medium (0.2)
PERC KICKDOWN DIST Low (0.22) Low (0.21) Low (0.22)
PERC DRIVE ENGINE ON TIME Low (0.53) High (0.7) Medium (0.6)
PERC PEDAL TIME High (0.37) Low (0.24) Medium (0.35)
PERC PTO TIME Medium (0.26) Low (0.21) Low (0.19)
PERC CLUTCH TIME Low (0.17) Low (0.17) Medium (0.2)
NUMB CLUTCH 100KM Medium (0.34) Medium (0.35) Medium (0.34)
NUMB PARK DIST 100KM Very Low (9.31) Very Low (7.09) Medium (16.91)
PERC MAX TRQ Medium (0.16) High (0.18) Medium (0.17)
PERC COMP DUTY CYCLE Low (0.06) Low (0.07) Low (0.06)
DIST DRIVEN RATIO Low (443.97) Low (484.32) Very Low (262.76)

Exterior
Features E-A E-B E-C

PERC MEAN SLOPE High (1.31) Very Low (0.06) High (1.32)
OUTDOOR TEMP High (19.58) Medium (18.01) Low (14.83)

Performance
Features P-A P-B P-C P-D

PERC CRUISE FUEL Medium (0.27) Low (0.17) Low (0.18) High (0.38)
PERC DRIVE FUEL Medium (0.69) Low (0.61) High (0.79) High (0.81)
PERC PEDAL FUEL Medium (0.31) Low (0.22) High (0.41) Low (0.2)
PERC IDLE FUEL Low (0.03) Low (0.02) Low (0.03) Very Low (0.02)
PERC TOP GEAR FUEL Medium (0.46) Low (0.37) Medium (0.5) High (0.59)
NUMB CLUTCH SLIP 100KM Low (0.14) Low (0.13) Low (0.13) Low (0.13)
NUMB CLUTCH PLATE WEAR 100KM Low (0.09) Low (0.09) Low (0.08) Low (0.07)
AMOUNT OF ASH 100KM Low (0.59) Low (0.49) Low (0.5) Low (0.49)
SOOT LEVEL 100KM Very Low (9.59) Very Low (7.75) Very Low (6.65) Very Low (6.32)
AVG FUEL L 100KM High (79.33) Very Low (37.84) Low (44.83) Low (42.67)

TABLE IV: Vehicles’ behaviors from the usage, exterior
and performance categories, where the cat-
egorization is based on clusters’ centroids.
Notice that a vehicle behavior is defined by
observing column within each conditional
category and the numerical values represent
clusters’ centroids (means).

bination, Transport cycle, Topography, Ambient tempera-
ture and Road condition.

The first scenario is the study of association between the
Transport cycle parameters and vehicle behaviors in the
usage condition. As displayed in Table V, nine associations
rules are found, where individual clusters (usage) imply
GTA parameters. Likewise, Figure 4 visualizes how vehicle
distributions (clusters) with respect to distance driven
(km per day) are spread on three the Transport cycle
parameters.

According to the GTA approximation, long-distance
haulage (TC-LONGD) is defined as the mean distance is
more than 50 km between each pick-up/delivery, which
associates with few number of stops and high average
speed. By studying the association between these defini-
tions and the vehicle behaviors in Table IV), it is very
likely that a majority of the long-distance haulage trucks
(TC-LONGD) follow GTA specification. This is indicated
in Table V (row three and six) and Figure 4, long-distance
haulage trucks (TC-LONGD) in cluster U-A and U-B tend
to have increased support, confidence and lift, compared to
other clusters. Interestingly, these measurements indicate
stronger relationships than other rules. Moreover, this is
also shown in Figure 4, where the cluster U-B dramatically
decreases in TC-DIST and TC-CONST.

Distribution vehicles (TC-DISTR) and construction ve-
hicles (TC-CONST ) are rarely found (including low con-
fidence and lift) in cluster U-B. According to the GTA,
distribution vehicles and construction vehicles should not

be used for longer routes, which is seen to be the case
of typical vehicles in cluster U-B. Likewise, it is hard to
determine if either cluster U-A and U-C generally asso-
ciates with TC-CONST or TC-DISTR, as the rules are
relatively similar. A minor group of long-distance haulage
trucks (TC-LONGD), seems to break the GTA parameter
rules, as they associate with cluster U-C which generally
represent trucks with low average speed, increased number
of stops and frequent clutch usage.
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Fig. 4: Illustration of distance driven per day for various
transport cycle GTA parameters. The x-axis rep-
resents the distance in km, normalized per day.

Antecedents Consequents Support Confidence Lift

U-A TC-CONST 0.033 0.0858 0.9683
U-A TC-DISTR 0.1078 0.2804 1.1637
U-A TC-LONGD 0.2437 0.6339 0.9454
U-B TC-CONST 0.0067 0.022 0.2484
U-B TC-DISTR 0.0302 0.0992 0.4116
U-B TC-LONGD 0.2679 0.8788 1.3107
U-C TC-CONST 0.0489 0.1574 1.777
U-C TC-DISTR 0.1029 0.3312 1.3749
U-C TC-LONGD 0.1588 0.5114 0.7627

TABLE V: Illustration of driving behaviors from the
usage condition that associates with the
transport cycle GTA parameter. The parame-
ter define three different vehicle parameters,
including construction environments (TC-
CONST), long-distance (TC-LONGD) and
goods distribution (TC-DISTR).

In this work, three types of topography GTA parameters
has been studied. The parameters includes flat (T-FLAT ),
predominately flat (T-PFLAT ) and hilly (T-HILLY ), de-
tailed definitions are presented in subsubsection III-A2.
Intuitively, explicit association rules has been extracted
between topography GTA parameters and clusters within
the exterior condition category. As illustrated in Table IV,
vehicles within cluster E-A and E-C tends to be driven
in more varied sloping, compared to cluster E-B. The
maximum average mean slope gradient in cluster E-A, E-
B and E-C is found to be approximately 1.82%, 0.67%
and 1.82%, respectively. From these observations it is very
likely that the majority of the general vehicle population
is not breaking the upper limit gradient rules, as they are



defined for the Topography GTA parameter (see subsub-
section III-A2). However, the data lacks enough detail to
capture what the exact gradients a truck has driven in.

As shown in Table VI, the T-HILLY GTA parameter is
infrequently found in all clusters. Still, decent confidence
are observed in all clusters, especially in cluster E-B (row
4). According to other rules, cluster E-A and E-C is
frequent with T-PFLAT, while Cluster E-A is mainly
associated with T-FLAT. This implies that general vehicle
populations are not breaking any upper topography GTA
rule limits.

Antecedents Consequents Support Confidence Lift

E-A T-HILLY 0.0066 0.0117 0.5806
E-A T-FLAT 0.1863 0.3315 1.0327
E-A T-PFLAT 0.3692 0.6569 0.9969
E-B T-HILLY 0.0096 0.0534 2.6552
E-B T-FLAT 0.0487 0.27 0.8412
E-B T-PFLAT 0.122 0.6766 1.0268
E-C T-HILLY 0.0039 0.0152 0.7568
E-C T-FLAT 0.086 0.3337 1.0398
E-C T-PFLAT 0.1677 0.6511 0.9881

TABLE VI: Illustration of driving behaviors from the
exterior condition that associates with the
topography GTA parameter. The parameter
define three different vehicle parameters, in-
cluding flat (T-FLAT), predominately flat
(T-PFLAT) and hilly (T-HILLY).

The main purpose of using topography GTA as a sales
tool is to optimize performance, service life and fuel econ-
omy. This indicates that a truck purchased with a hilly
(T-HILLY ) configuration, but then mainly used on flat
(T-FLAT ) or predominately flat (T-PFLAT ) roads, may
cause worse fuel economy since the truck, as a result of
GTA parameter is configured with a larger engine with
higher fuel consumption to be able to handle a higher
gradient of slope sufficiently. Consequently, association
between topography GTA parameters and FC is subse-
quently studied. Extraction on vehicle sub-populations
were considered to achieve environmental similarity, be-
cause FC is influenced by many environmental parameters.
Thereby, populations within Cluster U-C (low average
speed) and E-B (low average slope) are extracted before
associated with GTA parameters. Various explicit rules
on performance condition categories and topography GTA
parameters, is shown in Table VII. Interestingly, some
vehicles that should be used in hilly environments are
instead used in Cluster U-C (low average speed) and E-B
(low average slope), which thereby cause increase of fuel
economy (row one). Although, the support is quite low but
the confidence and lift is very sufficient. Notice, Cluster P-
A represents high FC.

As previously mentioned, the Ambient temperature GTA
parameter is also considered in this work. Two types
of parameters are studied, above (ATU-VH ) and below
(ATU40 ) 40 degrees Celsius. Since the trucks are mainly

Antecedents Consequents Support Confidence Lift

P-A T-HILLY 0.0134 0.0959 4.7632
P-A T-FLAT 0.0403 0.2886 0.8992
P-A T-PFLAT 0.086 0.6155 0.9342
P-B T-HILLY 0.0026 0.0091 0.451
P-B T-FLAT 0.0882 0.3041 0.9475
P-B T-PFLAT 0.1992 0.6868 1.0423
P-C T-HILLY 0.0025 0.0094 0.4651
P-C T-FLAT 0.0779 0.2951 0.9193
P-C T-PFLAT 0.1838 0.6956 1.0556
P-D T-HILLY 0.0016 0.0053 0.2644
P-D T-FLAT 0.1145 0.374 1.1654
P-D T-PFLAT 0.19 0.6206 0.9419

TABLE VII: Illustration of driving behaviors from the
performance condition that associates with
the topography GTA parameter. Popula-
tions within all performance conditions
are extracted with hence to Cluster U-
C (low average speed) and E-B (low av-
erage slope). The parameter define three
different vehicle parameters, including flat
(T-FLAT), predominately flat (T-PFLAT)
and hilly (T-HILLY).

used in Sweden, it is very unlikely that any GTA rules
are broken due to the rather cold climate. As shown in
Table VIII, no general patterns of broken rules are found.

Antecedents Consequents Support Confidence Lift

E-A ATU-VH 0.003 0.0053 1.1851
E-A ATU40 0.5591 0.9947 0.9992
E-B ATU40 0.1802 0.9996 1.0041
E-C ATU-VH 0.0014 0.0055 1.2351
E-C ATU40 0.2561 0.9945 0.9989

TABLE VIII: Illustration of driving behaviors from the
exterior condition that associates with
the ambient temperature GTA parameter.
ATU40 represents temperature below 40
degrees Celsius while ATU-VH represents
above 40 degrees Celsius.

We also found it interesting to study mixtures of item-
sets to discover interesting cluster combinations (see Fig-
ure 3 and Table III) that associates with GTA param-
eters. The rules were filtered by excluding antecedents
and consequents consisting of fewer than three items.
Furthermore, rules with a support below 0.001 and a
confidence below 0.7 were also rejected. It was found that
22 rules fulfills this constraint, as shown in Table IX. As
shown, itemsets of clusters imply itemsets of GTAs. As
presented in Figure 3 and Table III, vehicle behaviors
within the red flow (Cluster U-B, E-A and P-D) associates
with RC-SMOOT, ATU40, TC-LONGD and GCW60.0
(marked with red). This rule approximately captures 10%
of the total vehicle population, which indicates that these
behaviors are commonly recognized by this specific GTA
configuration. Cluster combination Cluster U-A, E-A and



P-D in the blue flow, was found to not capture similar
GTA parameters as the red rule (see confidence and lift),
as observed in the results. Figure 3 and Table III, provides
more possible rules to study other than the rules that has
been recently discussed.

Antecedents Consequents Support Confidence Lift

U-B, E-C, P-B RC-SMOOT, ATU40, TC-LONGD 0.0071 0.8305 1.5325
U-B, E-C, P-D RC-SMOOT, ATU40, TC-LONGD 0.0491 0.8187 1.5108
U-B, E-A, P-D RC-SMOOT, ATU40, TC-LONGD 0.1140 0.8157 1.5052
U-B, E-A, P-D ATU40, TC-LONGD, GCW60.0 0.1112 0.7955 1.4133
U-B, E-C, P-D ATU40, TC-LONGD, GCW60.0 0.0469 0.7824 1.3900
U-B, E-A, P-B RC-SMOOT, ATU40, TC-LONGD 0.0163 0.7690 1.4190
U-B, E-C, P-B ATU40, TC-LONGD, GCW60.0 0.0065 0.7618 1.3534
U-B, E-A, P-B ATU40, TC-LONGD, GCW60.0 0.0160 0.7569 1.3448
U-B, E-B, P-D ATU40, TC-LONGD, GCW60.0 0.0205 0.7509 1.3342
U-B, E-C, P-B RC-SMOOT, ATU40, GCW60.0 0.0064 0.7506 1.3515
U-B, E-A, P-D RC-SMOOT, ATU40, GCW60.0 0.1040 0.7445 1.3406
U-B, E-C, P-C RC-SMOOT, ATU40, TC-LONGD 0.0054 0.7418 1.3689
U-B, E-B, P-D RC-SMOOT, ATU40, TC-LONGD 0.0201 0.7381 1.3619
U-B, E-A, P-D RC-SMOOT, TC-LONGD, GCW60.0 0.1016 0.7268 1.5529
U-B, E-C, P-D RC-SMOOT, ATU40, GCW60.0 0.0434 0.7243 1.3042
U-B, E-B, P-D RC-SMOOT, ATU40, GCW60.0 0.0198 0.7238 1.3033
U-B, E-A, P-D RC-SMOOT, ATU40, TC-LONGD, GCW60.0 0.1008 0.7213 1.5492
U-B, E-A, P-B RC-SMOOT, ATU40, GCW60.0 0.0153 0.7207 1.2978
U-B, E-C, P-B RC-SMOOT, TC-LONGD, GCW60.0 0.0061 0.7184 1.5350
U-B, E-C, P-B RC-SMOOT, ATU40, TC-LONGD, GCW60.0 0.0061 0.7170 1.5398
U-B, E-C, P-D RC-SMOOT, TC-LONGD, GCW60.0 0.0425 0.7086 1.5140
U-B, E-C, P-D RC-SMOOT, ATU40, TC-LONGD, GCW60.0 0.0421 0.7026 1.5091

...
...

...
...

...
...

...
...

...
...

U-A, E-A, P-D ATU40, TC-LONGD, GCW60.0 0.0124 0.6092 1.0823
U-C, E-A, P-D ATU40, TC-LONGD, GCW60.0 0.0154 0.5948 1.0567
U-A, E-C, P-D RC-SMOOT, ATU40, TC-LONGD 0.0054 0.5897 1.0882
U-B, E-C, P-A ATU40, TC-LONGD, T-PFLAT 0.0015 0.5863 1.3389
U-A, E-B, P-C ATU40,GCW60.0, T-PFLAT 0.0138 0.585 1.1594

...
...

...
...

...
U-A, E-A, P-B ATU40, TC-LONGD, GCW60.0 0.0542 0.5138 0.9129

TABLE IX: Illustration of driving behaviors from all
conditional categories that associates with
various types of GTA parameters. Notice,
rules are filtered based on item length
(greater than three items), support (greater
than 0.001) and confidence (greater than
0.7).

V. Discussion
In this work, behaviors of trucks has been analyzed by

the employment of machine learning. Fundamentally, the
background of this research lies on to investigate a follow-
up costumer approach by studying associations between
LVD and GTA.

While it cannot with absolute certainty be claimed that
vehicles with a certain GTA parameter is used accordingly,
the data shows clear indication that this is the case for
the majority of the GTA parameters. However, this is a
limitation in the data used, rather than a fault in the
presented model. To further investigate in a more detailed
fashion, one would need access to GPS information. This
would provide accurate insights of how far the trucks travel
between stops along with its altitude information. This
level of accuracy would be necessary to properly classify if
trucks are used as designed and configured. As an example,
whether trucks follow the TC-LONGD in GTA parameter

Transport cycle, cannot be sufficiently explored, as the
data used can only provide information as detailed as
how far a truck has travelled in total on a given day.
Thus, it lacks any form of information of how far trips has
been between deliveries and pick-ups. In a similar fashion,
association between the Topography GTA parameter rules
and driving behaviors (clusters) can not be completely
guaranteed, as these measurements of mean slope do not
consider percentage of gradient at the moment of driving,
but rather an average over the lifetime of the truck. Nev-
ertheless, the data is still satisfactory enough to localize if
trucks are used as intended, as presented in the results.

Liang et al. [7], which was discussed in section II,
aimed to find optimal fuel economy of buses. The authors
extracted driving behaviours of mentioned buses using K-
means. The problem with K-means is that it is not very
resistant to noise, which is often present in sensor data.
Another research [2] mentioned in section II employs GMM
to find high-level track modes with satisfactory results.
Likewise, one of the major challenges in this work were to
obtain satisfactory clustering. We tested K-means initially,
however, it did not sufficiently capture driving behaviours
and was heavily affected by outliers in the data as the
K-means algorithm tends to push its centroid towards
the outliers. Thus, in this work, GMM was chosen as
clustering technique due to its resistance to noise and
the satisfactory results presented in [2]. The reduction of
noise sensitivity is achieved by probabilistic assignment
and therefore the GMM is able to preserve more dynamic
shapes than hard clustering algorithms like K-means. As
previously mentioned, an interquartile range method was
used to eliminate outliers and thereby improve clustering.
However, the interquartile range method is not always
suitable for non-Gaussian distributions, which is not guar-
anteed in the LVD. This drawback is a major problem if
new variances should be introduced into the model or if
existing explainable variances are excluded from the model
(GMM). However, this difficulty is possible to overcome by
employing more advanced outlier detection models, such
as Density-Based Spatial Clustering of Applications with
Noise (DBSCAN).

In the context of RBML (Association rule mining), the
framework seem to lack in terms of discovering distin-
guished itemsets in the consequents section. Association
rule mining should consider this challenge as the confi-
dence estimation is normalized with respect to antecedents
(see Equation 15) and the lift measure is normalized
with respect to both antecedents and consequents (see
Equation 16). However, this challenge is likely solved
by employing stratified sampling (pre-processing) with
respect to the GTA classes. This approach could possibly
push the data to uniform state (GTA frequency), but as
a consequence would we loss a large scale of the existing
variance.

Substantial studies on finding relations between vehi-
cles’ configurations and driving behaviors are rarely found,



especially considering finding relations on parameters sim-
ilar to GTA. Although, it has previously been found that
ARI is an effective supervised method when measuring
vehicles’ track modes, as discussed in section II.

Regardless of this, we found that applying association
rule mining on categorized clusters and GTA parameters
is a valid approach to measure if vehicles are used as
intented.

VI. Conclusion
This work has explored how Volvo trucks7 are used

by analyzing vehicles’ behaviors, described by clusters
extracted from logged sensor data. Intuitively, numerous
high-level features were constructed to describe the be-
haviors of trucks in a more detailed manner. Features
within the LVD were divided into three condition cate-
gories, usage, exterior and performance, each of which
were individually clustered using GMM to extract vehicles’
behaviors. Clusters’ centroids were then studied to cat-
egorize vehicles’ behaviors. Finally, associations between
vehicles’ behaviors and GTA parameters were studied by
using RBML.

It was found that the majority of the trucks are indeed
seemingly used as intended in terms of GTA configura-
tion. Likewise, the cluster evaluation method found clear
vehicle behaviors, as displayed in Table IV. This implies
that our purposed approach; Data preparation, Clustering
and Unsupervised evaluation, is promising method when
evaluating GTAs’ validity and vehicle behaviors.

By gathering insights on associations rules between
vehicles’ behaviors and GTA parameters, we were able to
capture certain patterns. Specifically, we found that item-
set Cluster U-B, E-A and P-D that associates with itemset
RC-SMOOT, ATU40, TC-LONGD and GCW60.0, has the
strongest relation among all associations rules. Unfortu-
nately, our proposed evaluation process is unable identify
distinguished itemsets, as discussed in section V.

As a future research, it would be interesting to explore
a similar approach with the addition of GPS information
as this would provide greatly improved insights in the
behavior of the trucks, which could possibly fully explain
the GTA parameters. This would allow the construction
of features that further capture the behavior patterns
in a more detailed fashion, than the features that were
constructed in this work. Another future research would
be to develop a framework that automatically reconstruct
the features that has been used in this work. However, this
is quite challenging as the feature engineering performed
in this work has been explored using human expertise.
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