
B
A
CH

ELO
R
TH

ESIS

Bachelor Degree of Computer Science and Engingeering

High Quality of Service in SDN

Bandwidth gurantee with QoS

Emma Andersson, Johan Bröhne

Computer Science and Engineering. 15 credits

Halmstad University, September 28, 2017–version 1.2

[September 28, 2017 – High Quality of Service in SDN version 1.2]

Emma Andersson, Johan Bröhne: High Quality of Service in SDN, Bandwidth gurantee
with QoS, c© September 2017

[September 28, 2017 – High Quality of Service in SDN version 1.2]

A B S T R A C T

Video streaming through IP networks has risen rapidly over the re-
cent years, and will continue to do so over the coming years. In addi-
tion to this, new technologies such as Virtual Reality and robotics will
lead to many new applications that will put high pressure on the net-
works. To combat these challenges, networks need to be application
sensitive, and be able to provide Quality of Service (QoS) based on
requirement. Network paradigms like Software Defined Networking
(SDN) enables the network to be directly programmable, and could
thus solve the challenge. In this thesis, the objective is to research if
SDN can provide High QoS.

Methods are developed to achieve High QoS with SDN. A combina-
tion of Differentiated Services Code Point (DSCP) values and DSCP
remarking with Meters are used enable High QoS and together they
can give bandwidth guarantee. As a result of the thesis, a solid the-
oretical method is provided for achieving QoS, tests are performed
and show that QoS can be implemented in SDN, but it is unable to
implement High QoS due to the lack of implementation for Meters
with DSCP remarking.

iii

[September 28, 2017 – High Quality of Service in SDN version 1.2]

[September 28, 2017 – High Quality of Service in SDN version 1.2]

A C K N O W L E D G E M E N T S

We would thank Time Critical Networks for the support and guidance
during the thesis.
We also want to thank Professor Magnus Jonsson for academic
support and guidance.

v

[September 28, 2017 – High Quality of Service in SDN version 1.2]

[September 28, 2017 – High Quality of Service in SDN version 1.2]

C O N T E N T S

1 introduction 1

1.1 Problem description 1

1.2 Project objective 2

1.3 Project questions 2

1.4 Project constraints 3

2 background 5

2.1 SDN 5

2.2 SDN Controllers 6

2.3 OpenFlow 7

2.4 QoS in networking 8

2.5 Realated research in the field of QoS in SDN 9

3 methods 11

3.1 Choice of QoS Method 11

3.1.1 Integrated Services (IntServ) 11

3.1.2 Differentiated services (DiffServ) 12

3.1.3 Comparison & Selection 13

3.2 Differentiated Services Code Point (DSCP) 14

3.2.1 DSCP values & classes 15

3.3 DSCP remarking 20

3.3.1 Metering 20

3.4 Proof of Concept 22

3.5 Mininet 22

3.6 Oracle VM VitruaBox (VBox) 23

3.6.1 SDN Hub 24

3.7 OF Software Switch (Ofsoftswitch) 25

3.8 Choice of controller 25

4 poc tests 27

4.1 Setup 27

4.2 Iperf 28

4.3 Test Setup 29

5 result 31

5.1 System Tests 31

5.2 Iperf Results 34

5.2.1 Test 1: No QoS 34

5.2.2 Test 2: Priority Queues 35

5.2.3 Test 3: Priority Queues with Meters 36

6 discussion 41

6.1 Results 41

6.1.1 Comparison to related research 41

6.1.2 A society’s perspective 42

6.2 The field of SDN 43

6.3 Meters 43

vii

[September 28, 2017 – High Quality of Service in SDN version 1.2]

viii contents

6.4 Physical switch approach 43

6.5 Virtual switch approach 44

7 conclusion 45

7.1 Future work 45

bibliography 47

a appendix 51

[September 28, 2017 – High Quality of Service in SDN version 1.2]

1
I N T R O D U C T I O N

1.1 problem description

In recent years there have been a growing popularity of video stream-
ing in best effort IP networks, thanks to the increasing computational
and display capabilities of user devices. The usage of video stream-
ing will continue to increase rapidly and according to a forecast from
CISCO [1], by year 2020 video streaming by IP will be 82% of total IP
traffic.

Without adaption from user applications and advanced traffic con-
trol, insufficient network resources could cause network congestion.
This can lead to video quality degradation that manifests as packet
losses or frame freezing during playback. This is particularly critical
in unmanaged best-effort networks where there are growing numbers
of concurrent video streaming applications from a variety of different
user devices.

Furthermore, with technologies like Virtual Reality (VR) and robotics,
we can expect many new applications and services. In the not so dis-
tant future, a worker might perform his/her task using live video
feed from a set of camera eyes of a robot that stream to a pair of VR-
glasses. Interaction with objects and the surrounding area might be
done from hundreds of miles away, through the hands of said robot.
The interactivity of the remote control and the operation applications
makes it very sensitive to packet delay and jitter. They require high
standards up to the point that they put hard real-time demands on
the network.

For these new applications to meet their demands, next generation
networks should become application aware and allow applications
that are highly sensitive and have the most demanding requirements
to negotiate with a network controller to allocate resources and re-
ceive a guarantee on the received network resources, for example, a
guarantee on a maximum delay of packet delays.

1

[September 28, 2017 – High Quality of Service in SDN version 1.2]

2 introduction

When an application has made a negotiation with the network con-
troller, network resources are allocated to a dedicated channel for that
specific application. In practice this is done by automatically configur-
ing flows and port priorities to keep the promised network guarantee.
Upcoming technology paradigms like Software Defined Networking
(SDN) will enable implementations such as this and other similar
ideas.

To take the first step towards a next generation network, the com-
pany TCN has defined a project to develop to research SDN. The
purpose is to research if SDN is capable of giving high Quality of
Service (QoS).

1.2 project objective

The objective of the thesis is to research if SDN can provide high QoS
to selected hosts. The QoS should enable end-to-end bandwidth guar-
antee between hosts.

To reach high QoS, the following features should be applied

• Provide end-to-end bandwidth guarantee from one host to
another

• Correctly prioritizing traffic depending on guarantee, thus
protecting the given limits

• Allowing excess traffic when resources are available

1.3 project questions

To achieve the objective of the project, following questions has been
developed and must be answered.

• How can SDN provide end-to-end bandwidth guarantees be-
tween hosts?

• How to prioritize traffic correctly, thus providing guarantee to
selected traffic while pushing aside excess traffic?

• How to allow excess traffic to flow in cases of excess resources?

[September 28, 2017 – High Quality of Service in SDN version 1.2]

1.4 project constraints 3

1.4 project constraints

The project is limited by the hardware that is used in simulating the
network. The hardware used have the following specification.

• Processor: Intel Core i7-4510U CPU @ 2.00GHz x 4

• Graphics card: Intel Haswell Mobile

• RAM: 8GB

• OS: Ubuntu 16.04 LTS

Furthermore, in terms of software, the project was specified to use
open source programs and tools.

Software emulated switches will be used, and should also be open
source.

Also, the protocol OpenFlow is to be used.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

[September 28, 2017 – High Quality of Service in SDN version 1.2]

2
B A C K G R O U N D

2.1 sdn

Open Networking Foundation (ONF) can be used to describe SDN.
Normally, a networking product has two planes, control and for-
warding plane. The forwarding plane is responsible for sending data
through the network product, from one port to another. The forward-
ing plane is sometimes also referred to as the data plane. The con-
trol plane manages the intelligence in the network product, it decides
where to send the packets that comes through. For example, it can
read routing tables to deduct were the packets should be sent.

The architecture of an SDN network breaks down the control and
forwarding plane functions so that the network becomes directly pro-
grammable and the underlying infrastructure becomes detached from
applications and network services. SDN takes over the control from
the switch. The traditional static network is transformed to a respon-
sive, intelligent and programmable network that is centrally controlled.
[2] [3]

SDN is "The physical separation of the network control plane from the
forwarding plane, and where a control plane controls several devices."[3]

Figure 1: A visual representation of the seperation of the planes

5

[September 28, 2017 – High Quality of Service in SDN version 1.2]

6 background

According to SDN: Software Defined Networks: An Authoritative
Review of Network Programmability Technologies [4], the control
plane is a combination of Layer 2 and Layer 3 of the Open Systems
Interconnection (OSI) model [5]. And thus, the data plane is compa-
rable to the Layer 1 of the OSI model.

SDN focuses on a few primary functions. [2][3]

• Separation between control plane and forwarding plane.

• A centralized controller that gives an overview over the net-
work.

• The control over the network is directly programmable, because
the forwarding and control functions are detached.

• Because of the detachment between control and forwarding
plane it makes it easier for administrators to adjust the traffic
flows dynamically to meet changed conditions.

• The logic of the network is inside a centralized software based
SDN controller that maintains an overview over the network,
which is shown as a logic switch for applications

• SDN allows network administrators to configure, manage, se-
cure and optimize network resources quickly and dynamically
with the help of automated SDN programs, that they can pro-
gram themselves so they don’t have to rely on proprietary soft-
ware.

• When implemented through open standards, SDN simplifies
network design and operation because instructions are provided
by SDN controllers instead of multiple, vendor-specific devices
and protocols.

2.2 sdn controllers

The architecture of SDN separates the control and forwarding plane.
It manages the control plane separately in a SDN controller. The con-
troller then becomes the centralized brain in the network. A controller
works in the same way for a network as a Operating system (OS)
works for a computer. The controller is the center of the network and
it is responsible for modification of the data and for the communica-
tion between applications and network products. Also, with the help
of the protocol OpenFlow (OF), it monitors the network.[6]

[September 28, 2017 – High Quality of Service in SDN version 1.2]

2.3 openflow 7

When an OF switch receives a packet that is completely new, a
packet which the switch does not have any instructions or matching
data for, the switch sends information about the packet to the con-
troller for instructions. The controller receives the packet and decides
how to handle it. It can drop the packet, send it out through a spe-
cific port or instruct the switch how to handle similar packets in the
future.[7]

There are a heap of different SDN controllers.

• NOX [8]: C++ with multithreading.

• POX [9]: Based on Python, often used for quick prototyping.

• Beacon [10]: Based on Java with multithreading, relies on OSGi
and Spring frameworks

• Floodlight [11]: Based on Java with multithreading, relies on
Netty framework

• MUL [12]: C with multithreading

• Maestro [13]: Java with multithreading

• Ryu [14]: Python, good for quick prototyping.

• OpenDaylight [15]: Based on Java.

These mentioned are some of the most popular which also fits into
the project constraints of being open source.

2.3 openflow

OF[16] is a protocol that is a vendor independent standard for com-
munication between the forwarding plane and the controller in the
SDN architecture.[3]

OF is a Southbound API for communication between the controller
and the switches, thereof it is of great importance that both the con-
troller and all the switches understands the OF protocol. The proto-
col is used to gain control over the forwarding tables that exists in
the switches, with control over the forwarding tables the controller
can become the centralized brain in the network. Thus, it is OF that
enables the controller to take control from the switches[17]

[September 28, 2017 – High Quality of Service in SDN version 1.2]

8 background

The architecture of OF consists of the concepts[17]

1. OF compatible switches that makes up the forwarding plane.

2. OF compatible controller that makes up the control plane.

3. A secure channel that binds the forwarding plane and control
plane together.

2.4 qos in networking

Accordning to Internet QoS: Architecture and Mechanisms for Qual-
ity of Service the defintion of QoS is "the capability to provide resource as-
surance and service differentiation in a network."[18].This can be achieved
by different traffic prioritizing or by reserving resources. By giving
different priorities to different flows it can provide a much higher
quality to those who are in dire need of it, for example, a video stream
application can get much higher priority than web browsing.

By giving higher priority to a specific flow, it can enable bandwidth
guarantee up to a set limit, since everyone with a lower priority has
to wait. Not only can it give bandwidth guarantee to select hosts, it
can also be used for congestion avoidance. By giving select traffic low
priority in cases of congestion, the network can drop low priority traf-
fic to avoid congestion and make room for those with high priority.
[19]

In HiQoS: An SDN-based multipath QoS Solution [20], different
tests are performed to show how QoS impacts the network perfor-
mance. In this article, tests between no QoS and simple priority queu-
ing are established.

The tests are performed in the same way. Two servers are sending
data through a switch with the same Host as destination. Server1,
which is considered the important one, streams 1Mbit/s. Server2,
which is the excess one, streams 3.5 Mbit/s. Together they stream
4.5Mbit/s through a switch with a link limit of 4Mbit/s, thus caus-
ing congestion. When congestion occurs, the response time of both
Server1 and Server2 is tested to see how reachable they are when
streaming data.

The test with no QoS support is called LiQoS, and no priority is
given, they have to share the 4mpbs link.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

2.5 realated research in the field of qos in sdn 9

The test with simple QoS is called MiQoS and uses two different
queues. Queue 1 has 1.5Mbit/s reserved bandwidth . and is dedicated
to the more important Server1, and Queue 2 has 2.5Mbit/s reserved
bandwidth and is for Server2.

The following table is derived from the test results of LiQoS and
HiQoS, and displays the response time of each server in both testes.

Table 1: Response times

LiQoS MiQoS

Server1 3000ms 0ms

Server2 3000ms 5000ms

In LiQoS, they have equal response time due to no priority be-
tween the servers. In MiQoS, the respons time for the more important
Server1 is almost instant, since it stays withing the given queue limit.
Only the less important Server2 is getting a huge respons time since
it exceeds its given queue rate.

From this, it can be seen how QoS can be used to differentiate
between sources of different importancy, and how QoS can affect the
perfomance of the network.

2.5 realated research in the field of qos in sdn

With video streaming via IP on the rise [1], network congestion con-
trol and Qos is now more important than before. Since SDN and OF
enables networks to be more controllable and intelligent thanks to
the network being programmable, network administrators no longer
have to leave networks unmanaged.

Because of this, researchers have presented different models that
achieve QoS in some ways with SDN and OF. Such researches can
give guidance since the objective in the thesis is to research ways to
achieve high QoS.

In HiQoS: An SDN-based multipath QoS solution [20], QoS is achieved
through class specific bandwidth guarantee. HiQoS divides traffic
into three different classes. Video streaming, interactive multimedia
and best effort stream. These three classes are forwarded into three
different queues with preconfigured rates, meaning each queue has a
fixed minimum and maximum bandwidth of the classes that passes
through.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

10 background

This way, QoS is achieved between the three classes, but in cases
of too much bandwidth from a single class, congestion will occur
for that matching queue. Thus, the scalability is limited since too
much traffic inside a queue will cause congestion, and the number
of queues has to be pre-configured. An adaptive QoS would be a per-
flow based bandwidth guarantee, giving guarantee unique to each
flow.

In addition to QoS queues, HiQoS also implements a rerouting
mechanism that quickly reroutes traffic to other paths if a path is
broken.

In another paper, Implementing quality of service for the software
defined networking enabled future internet[21], per-flow bandwidth
guarantee is used. Here, the type of traffic is dependent on the DSCP/-
TOS bits. Traffic is divided into two separate queues. One queue is
for traffic with DSCP/TOS bits enabled, and the other queue is when
it’s not enabled, in other words, for normal traffic. Although it can
only divide into two classes with the DSCP/TOS bits, three different
queues exist. The third queue is for control traffic, which it cannot
automatically divide a flow into.

It simply divides all DSCP/TOS traffic into high priority queue and
all regular traffic into best effort queue. When a new flow with high
priority traffic is detected, a new rate limiter queue is set up and the
flow is directed into it. The rate of the queue is supposed to be nego-
tiated between the flow and the controller. When the rate is set, the
flow cannot exceed that given rate, even if the link is mostly empty.

Both papers gives insight on how to perform QoS in SDN. Al-
though, the second paper has an edge for the project objective in this
thesis, since it provides a per-flow guarantee. Both papers do have
a downside in the way that they do not allow excess traffic in cases
of available network resources. The flows rate is limited by the con-
figured rate of the queue, even if the queues use different ways to
calculate said rate.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

3
M E T H O D S

3.1 choice of qos method

Internet Engineering Task Force (IETF) present different QoS architec-
tures. The two most commonly presented are Integrated Services [22]
and Differentiated Services [23].

These two architectures are examined and compared to each other,
for the purpose of the selection of QoS architecture for this project.

3.1.1 Integrated Services (IntServ)

IntServ uses resource reservation to achieve QoS.[22] Every router in
the IntServ domain has to follow the same resource reservation pol-
icy.

The way IntServ works is that every application that want to receive
QoS has to make an reservation in each of every routers in the path
between the application and the target destination. Each router with
IntServ receives the reservation request and has to respond if they are
able to fulfill that request. Every router between the sender and the
receiver need to accept the request for the guarantee to come through.

IntServ is divided into two functions. The first function is Flow
Spec, which is used by applications to describe their needed reserva-
tion for the routers. The second function is the Resource reservation
protocol (RSVP) which is used to communicate the requests and an-
swers between routers and applications.

Flow Spec
The Flow Spec is divided into two subparts.

• TSPEC: Traffic SPECification. It is used to provide details about
the traffic from the application. Details such as frames and pack-
ets are provided here so router know how much they need to
reserve.

• RSPEC: Request SPECification. RSPEC is used to specify the dif-
ferent requirements of the flow. There are three settings, "Best
Effort", "Controlled Load" and "Guaranteed".

11

[September 28, 2017 – High Quality of Service in SDN version 1.2]

12 methods

RSVP
The RSVPP is the protocol in charge of communicating between the
applications and the routers for reservations. [24]

RSVP primarily use two different messages to carry out the commu-
nication.

• PATH: The PATH message is sent by the sender host that wishes
to send QoS traffic to a receiver. The PATH message is used to
identify the data paths and sends the TSPEC of the sender.

• resv: Reservation Messages. The receivers of a PATH message
can choose to return a resv message to initiate a flow. The resv
message contains the flowspec and is sent through the datap-
ath of the PATH message in reverse, back to the sender. From
the resv message, the routers can reserve the correct amount of
resources for the flow between the sender and receiver.

IntServ uses a method called Soft State, meaning that the reserva-
tions will be cancelled if nothing is heard from the sender after a set
period of time. This will also help to dismiss any reservations in cases
of link failure like crashes.

3.1.2 Differentiated services (DiffServ)

DiffServ is a computer networking architecture that used Differenti-
ated Services Code Point (DSCP) values to classify the packets that
goes through its domain. The DiffServ domain is a collection of routers
that all use the same defined Diffserv policies [25]. A DiffServ domain
is composed of a group of interconnected DiffServ nodes that use the
same service policy and PHBs. Each router inside the DiffServ do-
main is configured to differentiate traffic priority based on what class
the incoming packets have.

The DiffServ architecture is based on the principle of traffic classi-
fication. The principle is that every packet is placed into a selected
number of traffic classes, and thus, is prioritized differently depend-
ing on class when entering a DiffServ domain. The routers in the
DiffServ domain reads the DSCP value from the IP-header to know
how to differentiate the traffic.

Routers that implement DiffServ also implements a term called per-
hop behavior (PHB). PHB is used to define the packet-forwarding
properties that is associated with each class. PHB is used to apply the
policies and priorities to a packet of selected class when performing a
hop. A hop can be a transfer from one router to another for example.
The PHB behavior is thus determined by both the DSCP value and
the Explicit Congestion Notification (ECN) bits.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

3.1 choice of qos method 13

3.1.3 Comparison & Selection

Both QoS architectures described allows for per-flow QoS and thus,
per-flow Bandwidth guarantee, which is in line with the project ob-
jective.

However, the way that they achieve this is different. DiffServ achieves
this by using DSCP to give different priorities to flows, while IntServ
does this by making each router in the flowpath reserve resources for
each soecific flow. The actual packet handling is also done per flow.

This causes problems for IntServ when used in a large scale net-
work. Each router has stored information and reservation from each
and every flow that passes through. In a large scale network, each
router will have to store a lot of reservations and it will become hard
to keep track of everything. The reservations are different from one
router to another since they can have unique flows running through
them, making it even harder to keep track of every reservation.

DiffServ avoids this problem. Since it is class based, the routers
only need to know what to do when a specific class arrives, and ev-
ery router has the same class configuration. This makes it a lot easier
to keep track of and to make configurations, and it makes the net-
work a lot more scalable, since the class definitions will stay the same
even if more flows are created.

Another problem that can arise with IntServ, is when flows are not
consistent. As described, IntServ drops any reservations when a pe-
riod of inactivity has occurred to make space for new reservations. In
cases where traffic is not consistent, the applications would have to
request reservations each time it wants to send something, making it
a very redundant experience.

Again, DiffServ avoids this problem thanks to a class based ap-
proach. It does not matter how often a application sends packets,
the class configuration is already established and no further setup
is needed for transmit.

From this comparison, class based QoS is the best approach and
thus, DiffServ is the QoS architecture of choice for this project.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

14 methods

3.2 differentiated services code point (dscp)

To achieve different priority levels in different flows, DSCP values
will be used. DSCP is 6-bits that is used to classify different priority
levels of IP-packets. The 6-bits are contained within a 8-bit field called
Differentiated services field (DS field). The other 2-bits in the DS field
is called ECN. ECN changes the way how network signals congestion.
With ECN, networks can signal network congestions by marking the
2 ECN bits in the DS field. Usually, networks signal network conges-
tions by dropping packets, thus, ECN allows notification through the
network without dropping packets. [23] [26]

It is the DSCP bits and the ECN bits that makes up the DS field. The
DS fields itself is contained within the IP header of a packet. Formerly,
the IPv4 Type of Service (TOS) field could be used for prioritizing dif-
ferent traffic, the DS field is the modern redefinition of the TOS field
[27]

IP Precedence Values
The Precedence Values are contained in a 3-bit field which was used
to determine the priority of the packet. The field has a range from 0

to 7, 0 is the lowest priority and 7 the highest. The eight values is the
following:

Table 2: Precedence Values

Value (Decimal) Description

000 (0) Best-Effort

001 (1) Priority

010 (2) Immediate

011 (3) Flash

100 (4) Flash Override

101 (5) Critical

110 (6) Internet

111 (7) Network

The DSCP values are often compared to the equivalent Precedence
Values, since DSCP values and DS field is the replacement for TOS.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

3.2 differentiated services code point (dscp) 15

3.2.1 DSCP values & classes

Since the DSCP value consists of 6-bits, mathematically it can have
64 different values and thus resulting in 64 different traffic classes.
Although, not every value is commonly used in networks. [28]

As for PHB, there are no predetermined behaviors encoded. This
gives the developer freedom in defining their own behaviors for traf-
fic classes. That said, most networks uses four commonly defined
PHB.

1. Default Forwarding

Default forwarding PHB (DF PHB) is the most basic PHB, and is
generally the bottom line. Any traffic that does not meet any of
the requirements of the defined classes in the network is placed
in DF PHB. The traffic that succumbs to DF PHB is usually
placed as best-effort traffic, meaning no QoS or guarantee is
given. [29]

2. Expedited Forwarding

Expedited Forwarding PHB (EF PHB) is used for traffic that
require low latency and low packet loss. This is the highest pri-
ority between different traffic classes. Use of EF PHB traffic is
usually restricted, since the applications using EF is very sen-
sitive to latency and packet drops. If you would use too much
traffic of the same highest priority simultaneously ,it can cause
overloads within the priority level, and it will cause delays, thus
disabling the purpose of EF PHB. Applications such as VOIP,
streaming or any other real-time service benefits greatly from
correct usage of EF PHB. [29] [30]

3. Assured Forwarding

Assured Forwarding PHB (AF PHB) is used to assure the deliv-
ery of the packets, as long as the traffic is kept within a given
constraint. Traffic that exceeds the given constraint risks getting
dropped in cases of network congestion, the droprate is depen-
dent on what DSCP value it has. AF is suitable to use if you
are trying to implement bandwidths guarantee, since you can
assure the delivery withing a given bandwidth.[29] [31]

AF is divided into four different classes with three different
drop rates, thus giving 12 different DSCP values that can be
used to tune your DiffServ domain.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

16 methods

The four classes are almost the same in priority, only with higher
classes winning out in cases of network congestion when the
traffic is divided between different classes. This is usually achieved
through Weighted fair queuing (WFQ)

WFQ

WFQ is an algorithm that divides traffic into weight classes.
Each packet is placed into a class specific queue which receives
a rate depending on its weight compared to the totals sum of
weights between all classes. WFQ is extension to normal Fair
Queuing (FQ), its purpose is to deliver equal rate divided to all
flows. [32]

The rate that each weight class received is calculated with:

R× wi
n∑

k=1

wk

(1)

Where R is the maximum link rate and w is the weight of a
given flow. The weight is divided by the sum of all weights to
give a fraction of the rate for the flow to receive. The weight of
each individual flow has to be configured, in AF, higher classes
get a higher weight to create priority between classes.

The three drop rates that exist are Low/Medium/High. The
drop rate indicates the probability that the packets will be dropped
in case of congestion where the traffic all belongs to the same
class. If congestion occurs, packets with higher drop probability
will be dropped. To avoid issues with Tail drop, Random early
detection (RED) is used when packets are dropped.

RED and Tail Drop

Tail drop is a simple queuing management algorithm. It works
by simply letting the queue fill up, and then dropping each in-
coming packet until the queue has space. [33]

The algorithm is unfair and dumb, not giving any care to any
priority levels, since it drops every incoming packet. Not only
that, it is also unfairly biased for packet-bursts. The bursts will
quickly fill up the queue and occupying the place, thus drop-
ping other packets, without losing much packets themselves.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

3.2 differentiated services code point (dscp) 17

Another major issue that Tail drop can create is TCP Global
Synchronization (TGS). TGS can occur when multiple TCP con-
nections has their packets dropped by tail drop. In such cases,
every connection will reduce their transmission rate to battle
the congestion at the same rate, which leads to unused network
resources due to reduced transmission rates from the TCP hosts.

In response to the reduced rate, the TCP hosts will start ramp-
ing up their transmission rate at the same time, which then
leads to congestions. Once again, they will reduce the rate in
order to battle the congestion, and now a cycle of unused re-
sources/network overflow will follow. [34]

Tail drop implements no QoS and cannot be used in conjunc-
tion with PHB. Instead RED is used, which gives some forms
of QoS to the queue system. RED also helps with avoidance of
TGS. This is why RED is used instead of Tail drop for AF. [35]

RED works much differently than Tail drop. RED is based around
a calculation of the average queue size with a minimum and
maximum threshold for that average value. With each incoming
packet it calculates the queue average size and compares it to
those two thresholds. If the average is between these thresholds,
packets are marked with a drop probability, that increases with
the amount of bandwidth the connection has, in other words,
the more packets a connection has inside the queue, the higher
is the probability of it getting dropped. The packets are then
dropped with the calculated probability.

In cases where the average is either lower or higher than the
thresholds, no probability is used. If the average is lower than
minimum, nothing happens. And if the average is larger than
maximum, all packets are dropped, which is similar to Tail
drop.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

18 methods

A simple RED algorithm based on Figure 1 in "Random Early
Detection (RED) gateways for Congestion Avoidance" . The fol-
lowing algorithm executes on every incoming packet.

1

2 Average queue s i z e c a l c u l a t i o n : avg_size
3 i f (max_threshhold > avg_size > min_threshold)
4 {
5 C al c u la t e drop p r o b a b i l i t y p
6 Drop with p r o b a b i l i t y of p
7 }
8 e l s e i f (avg_size > max_threshold)
9 Drop

10

Listing 1: RED Algorithm

Where the Drop probability ranges from 0 to 1 and is calculated:

P1 =
avgSize−minThreshold

maxThreshold−minThreshold
(2)

p =
P1

1− count× P1
(3)

Where count is the number of packets received since last packet
dropped.

4. Class selector

Since the DS field replaces the old TOS field, the DiffServ still
needs backwards compatibility with networks that use the TOS
fields instead. That way, networks with DiffServ can work to-
gether with networks that still is using TOS. Class selector PHB
(CS PHB) is defined to enable that backwards compatibility,

[September 28, 2017 – High Quality of Service in SDN version 1.2]

3.2 differentiated services code point (dscp) 19

Since TOS only uses 3-bits, the CS only uses the three first bits
in the 6-bit DSCP field to match. The CS values goes from 0 to
7, also again to match the priorities of TOS. For the Diffserv to
identify that the DSCP value it reads are from an TOS network,
the three last bits in the DSCP field are always 0. In short, if the
three last bits in the 6-bit fields is 000, then CS is applied. If the
three last bits are greater than zero, DF, EF or AF is applied. [36]

Table 3: Class selector values

DSCP Value (Decimal) Equivalent TOS priority

000 000 (0) Best-Effort (0)

001 000 (8) Priority (1)

010 000 (16) Immediate (2)

011 000 (24) Flash (3)

100 000 (32) Flash Override (4)

101 000 (40) Critical (5)

110 000 (48) Internet (6)

111 000 (56) Network (7)

As mentioned, not all DSCP values are commonly used. These are
the following commonly used DSCP values in networks. [28]

Table 4: Common DSCP values

DSCP Value (Decimal) PHB Droprate Precedence value

101 110 (46) EF - 101 (Critical)

000 000 (0) Best Effort - 000 (Routine)

001 010 (10) AF11 Low 001 (Priority)

001 100 (12) AF12 Medium 001 (Priority)

001 110 (14) AF13 High 001 (Priority)

010 010 (18) AF21 Low 010 (Immediate)

010 100 (20) AF22 Medium 010 (Immediate)

010 110 (22) AF23 High 010 (Immediate)

011 010 (26) AF31 Low 011 (Flash)

011 100 (28) AF32 Medium 011 (Flash)

011 110 (30) AF33 High 011 (Flash)

100 010 (34) AF41 Low 100 (Flash Override)

100 100 (36) AF42 Medium 100 (Flash Override)

100 110 (38) AF43 High 100 (Flash Override)

[September 28, 2017 – High Quality of Service in SDN version 1.2]

20 methods

3.3 dscp remarking

With the knowledge of how to enable QoS in SDN, the final piece is
how to implement it. OF provides support in how to mark packets
with different DSCP values of choice.

3.3.1 Metering

OF version 1.3 introduces the concept of metering, which allows SDN
operators to pass flows into specified meters that perform actions
upon those flows. [37] These actions enables the implementation of
QoS in SDN. Actions such as DSCP remarking based on flow rate is
enabled with metering in OF 1.3

The concept of metering is divided into two parts, Meter Tables
and Meter Bands. [37]

Meter Table
A meter table is built up by multiple meter entries, each meter entry

is attached to a unique flow. Thus, giving the ability to impose differ-
ent operations to each flow. With the ability to control each unique
flow, QoS can be implemented. With meters, DSCP values can be
changed according to flow rate, resulting in that a DiffServ domain
can be created.

Each flow that is attached to a meter is required to pass through the
meter and meter bands before it gets forwarded. The meter measures
the rate of each flow that passes through, giving options to impose
operations based on rates with the help of Meters Bands.

Since the meter entries are attached to each flow, it can distinguish
flows from the same ports, meaning, it’s not limited by the number of
ports to perform QoS operations, but can rather perform these oper-
ations based on the number of flows. This results in a more complex
system, since it does not group up every flow that belongs to the
same port.

A flow is not required to be attached to a meter entry, it is up to
the developer to specify which flows, or type of flows that should be
attached to a meter entry and passed through the meters. A flow can
also go through multiple meters. It can not be attached to multiple
meters at the same time, but it can be used in succession. This is done
through different meter entries in different flow tables.

A meter entry consists of three components

[September 28, 2017 – High Quality of Service in SDN version 1.2]

3.3 dscp remarking 21

Meter Identifier
The Meter ID is a 32-bit unsigned identifier which is used by the

flows to identify which meter entry it belongs to.

Counter
A regular counter that keeps count of the number of packets that

has been processed by the meter. The counter is updated for each
packet.

Meter Bands
It is the meter that measures the rate of each incoming attached

flow, but it is the Meter bands that holds the instructions and exe-
cutes the operations based on the measured rate of the flows. Each
Meter band contains instructions on what to do when a flow reaches a
set rate. The meter band applies actions when the flow-rate is greater
than the set rate of the meter. [37]

A meter can define multiple meter bands, although only one meter
band may be applied each time the packet passes through the me-
ter. In cases where a meter has multiple Meter bands defined, only
the Meter band with the highest set rate still being below the current
measured flow rate is applied. In cases where the flow-rate is lower
than any Meter band rates configured, no actions will be applied.

A Meter band primarily has two different actions that it can per-
form when a flow exceeds the set rate of the band. The two actions
are the following:

Drop
Order the Meter band to drop every packet if the current flow rate

exceeds the Meter bands rate.

DSCP Remark
This action allows the Meter band to increase the droprate by mod-

ifying the 6-bit DSCP field. If we are following the AF standard, this
can be done by increasing the DSCP value while still in the same class.
With DSCP remarking applied based on current flow rate, a DiffServ
domain could be created.

To sum it up, a Meter measures the rate and passes that informa-
tion to multiple Meter bands that apply actions based on that rate. A
meter entry is attached to a flow that directs the flow into a defined
Meter. Every meter entry makes up the Meter table.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

22 methods

With the ability to shift DSCP values based on flow rates, higher
priority can be given to flows within given rates and lower the flows
priority if they exceed it. In that way, bandwidth guarantee can be
achieved. And since lower priority traffic is only dropped in cases
of congestion, excess traffic is allowed when enough resources are
available.

3.4 proof of concept

To prove the methods and theories, real-time tests are constructed. A
Proof of Concept (PoC) has been established to provide evidence that
SDN can achieve bandwidth guarantees through QoS with the help
of DSCP and Meters.

Since virtual switches are used, the only way to achieve a proof
of concept is through emulation. An emulation network environment
with hosts and SDN-compatible switches fulfills the requirements to
perform different tests to prove the theories and methods. The base
requirements for the network environment is that it should provide
extensive support for SDN-switches and is OF compatible. This is
to enable the usage of SDN controllers which is needed to provide
DSCP remarking with Meters.

A tool for such purposes is a networking emulation software named
Mininet.

3.5 mininet

Mininet is an open-source network emulator with heavy focus on in-
cluding OF and SDN-controllers with OF support[38] .Thus, Mininet
is a tool for emulating SDN networks. Mininet runs on a single Linux
kernel and uses Python for its API, it provides a complete network-
ing experience, it provides everything from end-hosts to switches and
routers. This results in a tool that can be used to emulate a complete
network setup. [39]

Quoting Mininet, "In short, Mininet’s virtual hosts, switches, links, and
controllers are the real thing - they are just created using software rather than
hardware" [39]
Thanks to this, an emulated SDN network that behaves similar to a
real SDN network can be created, and should be more than enough
to create a proof of concept.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

3.6 oracle vm vitruabox (vbox) 23

Although Mininet allows the creation of a customized network of
choice, it does impose some limitations compared to a real physical
network. Since everything Mininet emulates shares the same com-
puter resources, thus resulting in a usually slower experience than
the physical network can deliver, and it’s not suited for experiments
ranging around 10gbps. For such cases, physical networks usually
give a better experience. [40] As a trade off for performance, emulated
software has the advantage of customization, it can create topologies
based on the users choice, instead of being limited for example by the
number of switches bought or physical space.

Mininet will be used to establish the PoC and provide evidence
that DSCP remarking with meters can be used to acheive QoS. A
more customizable network can enable more test cases than a high-
speed network.

In terms of OS, Mininet requires Linux to run, and Ubuntu is the
recommended distribution to use. Using a Virtual Machine (VM) is
recommended for the use of Mininet, thus running Mininet inside an
OS that is provided from the VM. [41] . With a VM, we can virtualize
an OS of choice that provides best compatibility with Mininet.

A VM provides benefits such as changing OS and/or OS version
with ease and modifying said OS however you want, without im-
pacting the host computer. These benefits are beneficial features for
executing different experiments.

3.6 oracle vm vitruabox (vbox)

The VM of choice is VBox. The choice is based on the recommenda-
tion for choice of VM from Mininet themselves [41]. Other factors
that were taken into consideration were that VBox is completely free.
In comparison to VMware, another popular VM that only has a free
trial, and later requires a subscription to keep on using its services.
[42] .

A VM is an emulator. An emulator can emulate different systems.
Emulation is the ability for a computer system to imitate another com-
puter system. With this, the computer can run programs and tools
designed for other systems. [43]

What this means is that any OS can be used in order to use Mininet.
The VM can emulate any OS for Mininet with no restrictions on what
OS the computer originally runs on.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

24 methods

Many VMs such as Vbox creates a separate sandboxed environ-
ment for the emulated OS to run on. A sandboxed environment mean
that the emulated OS cannot infringe on the Host OS and it enables
the user to use multiple OS at the same time, in different windows.

3.6.1 SDN Hub

SDN Hub provides a preconfigured OS with Mininet already installed
and several other tools and controllers that can be useful. The OS used
by SDNHub is Ubuntu which lines up with the recommendations
from Mininet. In addition to this, several tools for SDN developing is
included which provides ease-of-use to the user that does not have to
install these tools themselves.

List of tools taken from Sdnhub [44]

• SDN Controllers: OpenDaylight, ONOS, Ryu, Floodlight, Floodlight-
OF1.3, POX, and Trema

• Example code for a hub, L2 learning switch, traffic tap, and
other applications

• Open vSwitch 2.3.0 with support for OF 1.2, 1.3 and 1.4

• Mininet

• Pyretic

• Wireshark 1.12.1

• JDK 1.8, Eclipse Luna, and Maven 3.3.3

Although all tools won’t be used or needed, a VM with Mininet
installed and a couple of useful tools has a huge ease-of-use advan-
tage over creating a fresh VM with Ubuntu and manually installing
required tools. All benefits results in the choice of SDN Hubs precon-
figured VM over creating an new fresh OS from the ground up.

SDN Hubs VM provides the virtual SDN switch, Open vSwitch for
usage with Mininet. Open vSwitch (OVS) is arguably the most used
virtual SDN switch. That said, as of now, OVS do support OF 1.3 , but
it does not have any support for Meters. Meters is a critical function
in how QoS and Bandwidth guarantee will be achieved. Support for
Meters are planned in release 2.8, for which no release date is set. [45]
Therefore, another virtual SDN switch has to be used.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

3.7 of software switch (ofsoftswitch) 25

3.7 of software switch (ofsoftswitch)

OfSoftswitch is a virtual SDN switch that supports less OF versions
than OVS, but is said to have support for the Meters that OVS lack.
Although it is less supported, OF 1.3 and Meters is all that is required
to achieve QoS. [46]

OFSoftSwitch recommends to use Mininet as the emulated network
environment of choice, which suits well since Mininet was already
chosen. [47]

3.8 choice of controller

With all tools that is needed for a PoC, a controller should be selected
to manage it. There are multiple factors that should be taken into
consideration when picking a controller of choice. From the project
objective and the PoC, a couple of requirements for the controller can
be extracted.

To achieve QoS, DSCP will be used, and in turn, Meters will imple-
ment DSCP remarking. For Meters to be enabled, the switches need
to support OF 1.3. Thus, the controller also have to support OF 1.3, or
else it won’t be compatible with each other.

Since it is a PoC that is to be established, a controller suited for
quick deployment and prototypes would suit the purpose best. There
is no need for a complex, heavy controller targeted for use in large
scale deployments.

According to Feature-based Comparison and Selection of Software De-
fined Networking (SDN) Controllers [6], Ryu is the best controller for
OF support. Also, according to Advanced Study of SDN/OF controllers
[7], Ryu is suitable for quick prototyping.

From these two studies, Ryu seems like the ideal choice to set up a
PoC to provide evidence.

With every tool needed acquired, a PoC is established and the the-
ories and methods will be tested.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

[September 28, 2017 – High Quality of Service in SDN version 1.2]

4
P O C T E S T S

With the PoC established, tests can now be performed in an environ-
ment that behaves like a physical SDN network. With this, it can be
further researched if SDN can implement QoS.

To perform these tests, a test topology is needed. It is a simple
topology with the bare requirements to test QoS in SDN networks.
By that, it means that it must be able to simulate congestion to see
that different priority levels are working as intended.

4.1 setup

Figure 2: Simple Topology for congestion tests

Figure 2 is a simple topology with the bare minimum that allows
congestion when sending traffic to Host1. The topology consists of
Three switches and Three hosts. Switch2 and Switch3 will only be
used for DSCP remarking, and Switch1 will be used to sort flows
into queues depending on their DSCP value.

27

[September 28, 2017 – High Quality of Service in SDN version 1.2]

28 poc tests

All hosts will have to pass through a DSCP remarking switch be-
fore they can enter a queue sorting switch. The remarking and queue
sorting functions needs to be separated into different switches due to
OFSoftswitchs poor support of OpenFlows multi-table pipeline pro-
cessing. [48]

Thus, the tests are limited to sending traffic from Host2 and/or
Host3 to Host1. The tests will send traffic from both Host2 and Host3
with goal to cause congestion in Switch1. The traffic sent will have
different priorities and use Meters to further impose QoS. When Con-
gestion occurs, the switch should properly prioritize the traffic and
results will be shown if QoS is working.

A program, simpleSwitch13, that is provided by Ryu is used to
program the switches to behave like a simple regular switch with
OpenFlow support.

None of the switches have implemented DiffServs recommended
PHB, so normal priority queues has to be used in conjunction with
DSCP and Meters.

To perform these tests, a bandwidth testing tool will be used. A
tool suited for quick tests in Linux is Iperf, which also came included
with Mininet, making it a suitable tool.

4.2 iperf

Iperf[49] is a tool for measuring bandwidth on IP networks. When
testing the system, Iperf will be used to detect the bandwidth of the
incoming flows to Host1. Iperf will create UDP streams to the target
Host1, from client Host2 and Host3. The UDP streams will be sent
with different bandwidth and with different DSCP values so it can be
used to provide evidence that the QoS is working as intended. UDP
is the protocol of choice since it’s more simple than TCP and only
sends packets with no follow up.

Iperf will then provide details on the performed UDP stream. De-
tails such as bandwidth and packets transmitted is provided, thus giv-
ing information if the expected bandwidth from a client was achieved.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

4.3 test setup 29

4.3 test setup

Three different tests with different QoS implementations are performed.
In each test, multiple iterations of the same test is necessary to elimi-
nate flukes.

In cases of congestion within the same priority queue, First in -
First out (FiFo) queuing mechanism is used. From that, a simulation
program (A) has been developed to calculate expected bandwidth.
From that program, a mathematical model has been extracted. The
purpose of the simulation program and the mathematical model is to
gain values to compare the test results against.

The simulation program simulates when traffic of a given rate ex-
ceeds the link rate, it simulates congestion for the test cases in this
project. The simulator expects that traffic from both hosts arrive at the
same time, and therefore, the selection of packets that gets through is
random. The simulation is based on a probability that the next packet
processed will be from a specific host. By simulating multiple times,
an average throughput from each host will be presented, and gives a
fair value of what to expect from the real system tests.

For example, Host2 sends 800kbit/s and Host3 sends 500kbit/s
into a limit of 1000kbit/s. To simulate the average kbit/s for Host2,
the program will take the probability that the next packet processed
will be from Host2, which should be larger than Host3. Since 800kbit/s
of 1300 kbit/s is from Host2 and is a larger fraction of the total
throughput than that of Host3, Host2 should have higher probabil-
ity to successfully transmit packets. When a packet is put through, it
is removed from the pipeline, and the probability for a packet from
Host2 is now a little bit lower. For simplicity and to match the system
test, all bandwidth outside the accepted 1000kbit/s link is dropped.

The following mathematical model is used for bandwidth calcula-
tion in cases of congestion.

R = L× rk
n∑

k=1

rk

;
n∑

k=1

rk > Link (4)

Where R is the calculated Rate, and L is current remaining bandwitdh
of the Link that they have to share. r is the bandwidth that the host
tries to send.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

30 poc tests

Each and every test researches how SDN behaves with different de-
grees of QoS in congestion, and how well QoS can be implemented
as of today.

For consistency purposes, the same amount of bandwidth will be
transmitted in each test, and will together exceed the link of 1Mbp/s
to cause congestion. 800kbit/s from Host 2 and 500kbit/s from Host
3. This way, it should give a better picture on how QoS interacts with
the network. Also, to eliminate flukes, each test is performed 100

times,(100 seconds) and given a average kbit/s value from each host.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

5
R E S U LT

5.1 system tests

Test 1 : No QoS
The first test provides insight in how the traffic behaves with no QoS
applied.

Table 5: No QoS

Host Host2 Host3

Transmitted Bandwidth [kbit/s] 800 500

Calculated Result [kbit/s] 615.4 384.6

Simulated Result [kbit/s] 616 383

Since no QoS is involved, the FiFo simulator and Calculation can be
used. The result of the test will show how real world usage compares
to the simulated and calculated results. The results are calculated
with equation (4)

Test 2 : Priority Queues
The second test will implement QoS through Priority queuing. It uses
a simple QoS model which puts AF12 class into a high priority queue,
and rest is Best Effort.

Table 6: Priority Queues

Host Host2 Host3

Transmitted Bandwidth [kbit/s] 800/AF11 500/BE

Calculated Result [kbit/s] - -

Simulated Result [kbit/s] - -

Expected Result [kbit/s] 800 200

Since Host2 has high priority, it should transmit all 800Kbit/s, and
Host3 will have to use what’s left, 200kbit/s in this case. The mathe-
matical model and simulation does not take QoS into account.

31

[September 28, 2017 – High Quality of Service in SDN version 1.2]

32 result

Test 3 : Priority Queues + DSCP remarking with Meters
In the third test, both priority queues and Meters are used. The test is
divided into two sections, where the first section uses DSCP remark-
ing. It tries to achieve the requirements of High QoS based on the
methods, and thus achieve bandwidth guarantee. The other section
of the test uses Drop to research how it impacts the network.

DSCP Remark
Two tests will be performed, one with a high bandwidth guarantee
for Host2, and one with a low bandwidth guarantee for Host2.

Host2 will transmit 800kbit/s with a guarantee of 600kbit/s (AF11).
Host3 will transmit 500kbit/s of lower priority traffic (AF12) which
will compete for resources with the excess traffic that Host2 sends.

Table 7: High bandwidth guarantee test

Host Host2 Host3

Transmitted Bandwidth [kbit/s] 800/AF11 500/AF12

Calculated Excess Result [kbit/s] 114.3 285.7

Simulated Excess Result [kbit/s] 114 285

Guarantee [kbit/s] 600 0

Expected Result [kbit/s] 714 285

It is expected that Host1 will keep at least 600kbit/s. Then the ex-
cess traffic can be calculated with the model and simulated. The ex-
cess traffic is calculated with equation (4). Where L is the remaning
link bandwidth = 400 kbit/s, and r is divided by the sum of the ex-
cess traffic = 700kbit/s.

The second test for DSCP remarking explores the impact when
Host1 gets low bandwidth guarantee, in contrast to high guarantee
of the first test. Host2 and Host3 will transmit the same amount of
bandwidth, but now Host2 will have a guarantee of 200kbit/s instead
of 600kbit/s.

Table 8: Low bandwidth guarantee test

Host Host2 Host3

Transmitted Bandwidth [kbit/s] 800/AF11 500/AF12

Calculated Excess Result [kbit/s] 436.4 363.6

Simulated Excess Result [kbit/s] 436 363

Guarantee [kbit/s] 200 0

Expected Result [kbit/s] 636 363

Again, it is expected that Host2 can at least manage 200kbit/s which
is its guarantee. Excess traffic will be calculated and simulated. Again,
equation (4) is used to calculate the excess traffic.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

5.1 system tests 33

Drop
For the sake of QoS research in SDN, it is interesting to see how drop
impacts the network. Two tests will be performed. The first test will
test drop on one stream and the second test will test drop on both
streams.

Table 9: One Host drop

Host Host2 Host3

Transmitted Bandwidth [kbit/s] 800 500

Calculated Excess Result [kbit/s] - -

Simulated Excess Result [kbit/s] - -

Drop level [kbit/s] 200 -

Expected Result [kbit/s] 200 500

Host2 has a Meter with a Meter band that executes drop if it ex-
ceeds 200kbit/s. Host3 will then be free to use all of his transmitted
bandwidth.

Table 10: Two Host drop

Host Host2 Host3

Transmitted Bandwidth [kbit/s] 800 500

Calculated Result [kbit/s] - -

Simulated Result [kbit/s] - -

Drop level [kbit/s] 200 200

Expected Result [kbit/s] 200 200

Both hosts has a Meter band at 200kbit/s and should be kept within
that limit.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

34 result

5.2 iperf results

5.2.1 Test 1: No QoS

Figure 3: Results from Test1

The test result shows that Host2 transmits 628Kbit/s, which is in
line with the expected values. Host 3 transmits 346 Kbits/sec, which
is not far from the simulated and calculated values. The outcome of
test1 behaves as expected.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

5.2 iperf results 35

5.2.2 Test 2: Priority Queues

Figure 4: Results from Test2

As expected, Host2 with the high priority queue can transmit all its
bandwidth without any interruption from the lesser prioritized Host3.
Host3 has to use around 200kbit/s which is left over. The results are
in line with the expected results.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

36 result

5.2.3 Test 3: Priority Queues with Meters

DSCP remarking

Figure 5: Result from Test3 with guarantee at 600kbit/s

The results of the tests are not in line with the calculated, simulated
or theoretical results. From an average of 100 tests (100 seconds), the
margin is too large to be in line with the expected results.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

5.2 iperf results 37

Figure 6: Result from Test3 with guarantee at 200kbit/s

The results of the tests are not in line with the calculated, simulated
or theoretical results. From an average of 100 tests (100 seconds), the
margin is too large to be in line with the expected results.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

38 result

Drop

Figure 7: Result from Test3 with one Host drop at 200kbit/s

Host2 that has the Meter band with drop at 200kbit/s is kept
around 200kbit/s, which is in line with the expected results. Also,
Host3 kan fully utilise the network and transmit his bandwidth with-
out interruption.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

5.2 iperf results 39

Figure 8: Result from Test3 with both Host drop at 200kbit/s

Both hosts are kept around 200kbit/s, which is in line with the
Meter bands and in line with the expected results.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

[September 28, 2017 – High Quality of Service in SDN version 1.2]

6
D I S C U S S I O N

6.1 results

Most of the results from our tests were in line with what we ex-
pected. The most surprising result were Test3 with DSCP remarking,
these test results were very similar to Test2. All three tests gave full
800kbit/s to Host1 even though the traffic exceeded the given limits
in Test3.

Since Test3 is basically a Test2 with DSCP remarking and the re-
sults were the same anyway, we concluded that DSCP remarking did
not work. To further investigate, we tested with Drop function, and
we saw that the bandwidth measure feature did indeed work, elimi-
nating Meters as the cause of fault in Test3. With test confirming that
Meters and Meter bands with drop are working. The only remaining
factor was DSCP remarking as the reason why the tests failed.

Sadly, we needed DSCP remarking for High QoS to work properly
and thus, from these tests, we could conclude that we can’t imple-
ment High QoS in SDN as of today.

Even without DSCP remarking and High QoS, we could still achieve
QoS in SDN. Through comparing Test1 and Test2, we could see that
QoS was achieved and how it impacts the network.

With the drop function, a maxlimit QoS could be established in a
network. This could be useful in networks. If you configure a maxlimit
for each flow, it results in a form of bandwidth guarantee, since if no-
body can exceed their given maxrate, nobody will impose on your
given rate. It can also be useful in Best Effort networks to prevent
hosts from flooding the network and causing congestion.

6.1.1 Comparison to related research

Even though we could not achieve High QoS in our tests, our test
results still provide proof for QoS in SDN. But how do our results
compare to other researches in the same field?

41

[September 28, 2017 – High Quality of Service in SDN version 1.2]

42 discussion

Our Test2 is very similar to the approach made in Implementing
Quality of Service for the Software Defined Networking Enabled Fu-
ture Internet.[21] In that research, QoS is achieved by sorting flows
into either high priority traffic or regular traffic. This is done by read-
ing if the flows has DSCP enabled or not. In our Test2, we separate
flows based on DSCP, and sort them into either a high priority queue,
or send traffic as Best Effort.

Our Test3 with drop function proves not only that Meters are work-
ing, but also that we can implement a maxlimit QoS. In Enhancing ns-
3 with Openflow 1.3 support[48] they also perform tests to prove that
Meter with drop enabled can be used for flow ratelimiting. Our result
in Test3 with drop is amplified by the similar result in Enhancing ns-3
with Openflow 1.3 support. Meaning that their result strengthens the
authenticity of our result.

6.1.2 A society’s perspective

How can our work affect the surroundings from a society’s perspec-
tive? Our work is focused around QoS, so it is interesting to discuss
how QoS can make an impact. QoS is good from a security point of
view. With QoS you can regulate the traffic so that nobody can mis-
behave.

By using a maxlimiter QoS you can prevent attacks such as Dis-
tributed Denial of Service (DDoS) by not allowing any traffic to over-
flow the network. DDoS works by trying to overflow systems by mak-
ing a lot of requests to said system. DDos can be used to bring down
critical functions in the society. With a maxlimter QoS, certain flows
or paths may be restricted in how much data they can use, thus re-
ducing the risk of somebody causing overflow in the network.

Methods such as those used in our Test3 with drop can be used to
establish a maxlimiter QoS, flows that try to break their limit simply
gets their packets dropped, and thanks to that, attacks such as DDoS
are suppressed.

In addition, by limiting the rate of flows, it can give guarantees to
critical traffic that attackers might try to disrupt. In conclusion, QoS
can be used to increase the security in networks by automatically
putting restraints on flows.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

6.2 the field of sdn 43

6.2 the field of sdn

We were given the task of researching QoS in the field of SDN. Since
SDN is directly programmable it could be used to solve the prob-
lems described in the problem description. SDN is a field that is far
from fully developed and thus, lacking a lot of in-depth support. This
means that most articles and guides about SDN are very shallow and
the in-depth ones are sparse and niche.

All this resulted in that we could not find much documentation
that could support our research. In contrast to this, most research
papers were too in-depth for our bachelor thesis and were often very
specialized and thus could not provide much help for our project
objective.

6.3 meters

To achieve the features in the project objective, we chose Meters to be
used in our implementation. A big problem with Meters was that it
was very poorly supported by the most used virtual switches. Meters
are a part of OF 1.3 which is broadly used in SDN. As mentioned,
SDN lacked in many regards, and since version 1.3 of OF is such a
small part of whole SDN. The support and documentation of 1.3 with
Meters was lacking even more.

This gave us very little choice in using tools that actually claimed
they supported Meters, although none of them actually had full im-
plementation of DSCP remark for those meters.

6.4 physical switch approach

Another way to provide an PoC with practical evidence of the meth-
ods would be to use physical switches with SDN and OF enabled.
This approach was examined at the start. Most switches with OF sup-
port are expensive enterprise switches designed for datacenters, not
suitable for our prototype and experimental work.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

44 discussion

We found OF compatible switches by the name of Zodiac FX, which
claimed to be the first OF switch for private usage at home, therefor
designed for home usage and not for enterprise deployment. A cou-
ple of those switches were bought and the company claimed that they
had full OF version 1.3 support with Meters fully supported.

After some investigation, we found in their source code that no
support for DSCP remarking were implemented at all. We contacted
them about this, and they promised support and patches that never
came. In addition to this, they claimed that their switches could re-
place your normal switches in the house. After a fair amount of test-
ing, we discovered that the switch could not perform at high speeds,
which was claimed. We also saw that the switch had problems with
simply holding the connection to the controller even at low speeds.
We have spent a lot of time on these switches that could not deliver
what was promised.

So after this approach, we had no way out but to try the virtual
switch approach.

6.5 virtual switch approach

So, what was left to us was the virtual switch approach. As men-
tioned, the support for version 1.3 and Meters were very sparse and
basically the only one that was recommended by other papers was
OFsoftswitch, and it seemed to have the best support for our objec-
tive. But as we progressed with our tests, even that switch failed to
deliver complete support for DSCP remarking.

When configuring OFsoftswitch, we also ran into a lot of prob-
lems with dependencies. Every guide used said different things and
it turned out that no guide actually worked. We made an own mix
of the guides to even get the switch to run, and then we noticed that
meters were not fully implemented.

OVS would be much easier to configure since its widely more sup-
ported, but it does not even have any Meters implemented as of now,
even though they have greater than OF version 1.3 support.

All in all, all these problems made us focus more on support prob-
lems than we would have wanted. A lot of time had to be used in
other places than in the actual report. It resulted in that it took much
more time than was actually needed for the research.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

7
C O N C L U S I O N

From Test1 and Test2, it can be seen that QoS is implemented into the
SDN network. Both tests are using the same bandwidth parameters
but gain different results, in Test2 it provides a lot more bandwidth to
Host2 over Host3 in comparison to the result from Test1. This shows
that Host2 has a higher priority than Host3 and thus, QoS is achieved.

The results from the DSCP remark + priority queues tests in Test3
were not in line with the expected results. The results are very similar
to the results of Test2, which only utilizes priority queues. The results
from the Drop tests were in line with the expected results. The drop
tests prove that the bandwidth measuring feature of Meters are work-
ing and that the Meter bands are using drop correctly. With the drop
function, a QoS with a maxlimit for each flow is enabled.

From the very similar results of Test2 and Test3 with DSCP remark,
and from the results of the drop tests, it is concluded that DSCP re-
marking does not work as intended. Proof is given that Meters work,
and the DSCP remark + priority queues behave like Test2 with prior-
ity queues. Thus, giving proof that the DSCP remarking function is
not fully implemented.

To sum it up, SDN is able to implement QoS but not High QoS due
to lack of implementation of DSCP remarking.

7.1 future work

From the results and conclusion of this project, some future work
comes to mind. Since we lacked the evidence from practical proof to
support our methods, future work could include the development of
a switch with full support for DSCP remarking with Meters in OF 1.3.
Two ways are presented:

• Further development of existing switches to implement full
support of ver 1.3. Taking an existing switch and adding sup-
port for DSCP remarking is probably the quickest way to achieve
a switch with multiple other OF functions.

45

[September 28, 2017 – High Quality of Service in SDN version 1.2]

46 conclusion

• Developing a brand new switch designed for the purpose of
DSCP remarking with Meters. Developing and implementing
the minimum requirements for an OF 1.3 switch with DSCP
remarking support, thus making it a very specialized switch
with only a few OF functions. It will probably require a lot of
time and expertise.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

B I B L I O G R A P H Y

[1] Cisco. The zettabyte era: Trends and analysis. Technical report,
Cisco public, 06 2017.

[2] Sezer S, Scott-Hayward S, Chouhan P, Fraser B, Lake D,
Finnegan J, Viljoen N, Miller M, and Rao N. Are we ready for
sdn? implementation challenges for software-defined networks.
IEEE Communications Magazine, 51(7):36–43, 2013.

[3] Open Networking Foundation. Software-defined networking
(sdn) definition, 03 2017. URL https://www.opennetworking.

org/sdn-definition/.

[4] Nadeau T and Gray K. SDN: Software Defined Networks: An Au-
thoritative Review of Network Programmability Technologies. O’Reilly
Media, 1 edition, 09 2013.

[5] Networkel. Osi model : 7 layer of the network com-
munications, 09 2017. URL https://networkel.com/

osi-model-7-layer-network-communication/.

[6] Khondoker R, Zaalouk A, Marx R, and Bayarou K. Feature-based
comparison and selection of software defined networking (sdn)
controllers. Computer Applications and Information Systems (WC-
CAIS), 2014 World Congress, 01 2014.

[7] Zimarina D Pashkov V Smeliansky R Shalimov A, Zuikov D.
Advanced study of sdn/openflow controllers. Proceedings of the
9th Central & Eastern European Software Engineering Conference in
Russia, (1), 10 2013.

[8] Nox network control platform, 03 2017. URL https://github.

com/noxrepo/nox.

[9] Pox controller tutorial, 03 2017. URL http://sdnhub.org/

tutorials/pox/.

[10] Beacon, 03 2017. URL https://openflow.stanford.edu/

display/Beacon/Home.

[11] Floodlight, 03 2017. URL http://www.projectfloodlight.org/

floodlight/.

[12] Openmul controller, 03 2017. URL http://www.openmul.org/

openmul-controller.html.

[13] Maestro-platform, 03 2017. URL https://code.google.com/

archive/p/maestro-platform/.

47

[September 28, 2017 – High Quality of Service in SDN version 1.2]

https://www.opennetworking.org/sdn-definition/
https://www.opennetworking.org/sdn-definition/
https://networkel.com/osi-model-7-layer-network-communication/
https://networkel.com/osi-model-7-layer-network-communication/
https://github.com/noxrepo/nox
https://github.com/noxrepo/nox
http://sdnhub.org/tutorials/pox/
http://sdnhub.org/tutorials/pox/
https://openflow.stanford.edu/display/Beacon/Home
https://openflow.stanford.edu/display/Beacon/Home
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://www.openmul.org/openmul-controller.html
http://www.openmul.org/openmul-controller.html
https://code.google.com/archive/p/maestro-platform/
https://code.google.com/archive/p/maestro-platform/

48 bibliography

[14] Ryu, 03 2017. URL http://osrg.github.io/ryu/.

[15] Opendaylight, 03 2017. URL https://www.opendaylight.org/.

[16] Open Networking Foundation. Openflow - open networking
foundation, 03 2017. URL https://www.opennetworking.org/

sdn-resources/openflow.

[17] Farhady H, Lee H, and Nakao A. Software-defined networking:
A survey. Computer Networks, 81:79–95, 2015.

[18] Wang Z. Internet QoS: Architecture and Mechanisms for Quality of
Service. The Morgan Kaufmann Series in Networking. Morgan
Kaufmann, 1 edition, 03 2001.

[19] Inc. Cisco Systems. Quality of service networking, 06

2017. URL http://docwiki.cisco.com/wiki/Quality_of_

Service_Networking.

[20] Yan J, Zhang H, Shuai Q, Liu B, and Guo X. Hiqos: An sdn-based
multipath qos solution. China Communications, 12(5):123–133, 05

2015.

[21] Sharma S, Staessens D, Colle D, Palma D, Goncalves J,
Figueiredo R, Morris D, Pickavet M, and Demeester P. Imple-
menting quality of service for the software defined network-
ing enabled future internet. Software Defined Networks (EWSDN),
2014 Third European Workshop, 09 2014.

[22] Braden R, Clark D, and Shenker S. Integrated Services in the Inter-
net Architecture: an Overview. ISI and MIT and Xerox PARC, 06

1994.

[23] Nichols K, Blake S, Baker F, and Black D. Definition of the Dif-
ferentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
Cisco Systems and Torrent Networking Technologies and EMC
Corporation, 12 1998.

[24] Ed. R Braden, Zhang L, Berson S, Herzog S, and Jamin S. Re-
source ReSerVation Protocol (RSVP) –. ISI and UCLA and IBM
Research and Univ. of Michigan, 09 1997.

[25] Configuration Guide - QoS. HUAWEI TECHNOLOGIES CO.,
LTD., 03 2012.

[26] Ramakrishnan K, Floyd S, and Black D. The Addition of Ex-
plicit Congestion Notification (ECN) to IP. TeraOptic Networks and
ACIRI and EMC, 09 2001.

[27] Grossman D. New Terminology and Clarifications for Diffserv. Mo-
torola, Inc., 2002.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

http://osrg.github.io/ryu/
https://www.opendaylight.org/
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
http://docwiki.cisco.com/wiki/Quality_of_Service_Networking
http://docwiki.cisco.com/wiki/Quality_of_Service_Networking

bibliography 49

[28] Cisco Nexus 1000V Quality of Service Configuration Guide. Cisco,
release 4.2(1)sv1(4) edition, 03 2016.

[29] Baker F, Chan K, and Babiarz J. Configuration Guidelines for Diff-
Serv Service Classes. Nortel Networks and Cisco Systems, 2006.

[30] Davie B, Charny A, Benson K, Le Boudec J.Y., Bennett J.C.R,
Courtney W, Davari S, Firoiu F, and Stiliadis D. An Expedited For-
warding PHB (Per-Hop Behavior). Cisco Systems, Inc. and Tellabs
and EPFL and Motorola and TRW and PMC-Sierra and Nortel
Networks and Lucent Technologies, 03 2001.

[31] Heinanen J, Baker F, Weiss W, and Wroclawski J. Assured For-
warding PHB Group. Telia Finland and Cisco Systems and Lucent
Technologies and MIT LCS, 06 1999.

[32] 6.6:scheduling and policing mechanisms, 08 2017. URL http://

netlab.ulusofona.pt/rc/book/6-multimedia/6_06/index.htm.

[33] Network OS Layer 2 Switching Configuration Guide, 6.0.1a. Brocade
Communications Systems, Inc., 53-1003770-06 edition, 08 2016.

[34] Cisco IOS Quality of Service Solutions Configuration Guide. Cisco,
release 12.2 edition, 01 2014.

[35] Floyd S and Jacobson V. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Networking,
pages 397–413, 08 1993.

[36] Richardson S. The class selector phb and dscp values,
08 2017. URL https://www.ccexpert.us/traffic-shaping-2/

the-class-selector-phb-and-dscp-values.html.

[37] OpenFlow Switch Specification. Open Networking Foundation, ver-
sion 1.3.0 edition, 06 2012.

[38] Mininet Team. Openflow controllers, 05 2017.
URL https://github.com/mininet/mininet/wiki/

Introduction-to-Mininet#controllers.

[39] Mininet Team. What is mininet?, 05 2017. URL https://github.

com/mininet/mininet/wiki/Introduction-to-Mininet#what.

[40] Mininet Team. What are mininet’s limitations?, 05

2017. URL https://github.com/mininet/mininet/wiki/

Introduction-to-Mininet#limits.

[41] Mininet Team. Download/get started with mininet, 05 2017.
URL http://mininet.org/download/.

[42] VMware. Vmware learning zone, 08 2017. URL https:

//www.vmware.com/professional-services/learning-zone.

html?src=WWW_US_HP_LearningZone_R2C2_D_NA_StartTrial.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

http://netlab.ulusofona.pt/rc/book/6-multimedia/6_06/index.htm
http://netlab.ulusofona.pt/rc/book/6-multimedia/6_06/index.htm
https://www.ccexpert.us/traffic-shaping-2/the-class-selector-phb-and-dscp-values.html
https://www.ccexpert.us/traffic-shaping-2/the-class-selector-phb-and-dscp-values.html
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#controllers
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#controllers
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#limits
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#limits
http://mininet.org/download/
https://www.vmware.com/professional-services/learning-zone.html?src=WWW_US_HP_LearningZone_R2C2_D_NA_StartTrial
https://www.vmware.com/professional-services/learning-zone.html?src=WWW_US_HP_LearningZone_R2C2_D_NA_StartTrial
https://www.vmware.com/professional-services/learning-zone.html?src=WWW_US_HP_LearningZone_R2C2_D_NA_StartTrial

50 bibliography

[43] National Library of the Netherlands. What
is emulation?, 05 2017. URL https://www.

kb.nl/en/organisation/research-expertise/

research-on-digitisation-and-digital-preservation/

emulation/what-is-emulation.

[44] SDN Hub. All-in-one sdn app development starter vm, 05 2017.
URL http://sdnhub.org/tutorials/sdn-tutorial-vm/.

[45] Linux Foundation Collaborative Project. Quality of service (qos),
05 2017. URL http://docs.openvswitch.org/en/latest/faq/

qos/.

[46] Openflow 1.3 software switch, 05 2017. URL https://github.

com/CPqD/ofsoftswitch13.

[47] Openflow 1.3 tutorial, 05 2017. URL https://github.com/CPqD/

ofsoftswitch13/wiki/OpenFlow-1.3-Tutorial.

[48] Jerez Chaves L, Calciolari Garcia I, and Madeira E. Ofswitch13:
Enhancing ns-3 with openflow 1.3 support. WNS3 ’16, Proceed-
ings of the Workshop on ns-3, pages 33–40, 06 2016.

[49] Iperf, 09 2017. URL https://iperf.fr/.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

https://www.kb.nl/en/organisation/research-expertise/research-on-digitisation-and-digital-preservation/emulation/what-is-emulation
https://www.kb.nl/en/organisation/research-expertise/research-on-digitisation-and-digital-preservation/emulation/what-is-emulation
https://www.kb.nl/en/organisation/research-expertise/research-on-digitisation-and-digital-preservation/emulation/what-is-emulation
https://www.kb.nl/en/organisation/research-expertise/research-on-digitisation-and-digital-preservation/emulation/what-is-emulation
http://sdnhub.org/tutorials/sdn-tutorial-vm/
http://docs.openvswitch.org/en/latest/faq/qos/
http://docs.openvswitch.org/en/latest/faq/qos/
https://github.com/CPqD/ofsoftswitch13
https://github.com/CPqD/ofsoftswitch13
https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow-1.3-Tutorial
https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow-1.3-Tutorial
https://iperf.fr/

A
A P P E N D I X

51

[September 28, 2017 – High Quality of Service in SDN version 1.2]

1 publ ic c l a s s Simulat ion
2 {
3 publ ic s t a t i c void main (S t r i n g [] args)
4 {
5 i n t kbitavgHost2 = 0 ;
6 i n t kbitavgHost3 = 0 ;
7 i n t Host2packetsum = 0 ;
8 i n t Host3packetsum = 0 ;
9 i n t simsec = 1000 ; //Simulated seconds

10

11 f o r (i n t sec = 0 ; sec < simsec ; sec ++)
12 {
13 ArrayList t r a f f i c = new ArrayList () ;
14 f o r (i n t i = 0 ; i < 8 0 0 ; i ++) // k b i t from Host2

15 {
16 t r a f f i c . add (" 2 ") ; //From host2

17 }
18 f o r (i n t i = 0 ; i < 5 0 0 ; i ++) // k b i t from Host3

19 {
20 t r a f f i c . add (" 3 ") ; //From host3

21 }
22

23 i n t Amount = 1000 ; //1000 k b i t f o r l i n k s i z e
24 i f (t r a f f i c . s i z e () < Amount)
25 {
26 Amount = t r a f f i c . s i z e () ;
27 }
28 Random randomGen = new Random () ;
29 f o r (i n t i = 0 ; i < Amount ; i ++)
30 {
31 i n t roof = t r a f f i c . s i z e () −1;
32 i n t randomInt = 0 ;
33

34 i f ((t r a f f i c . s i z e () −1) > 0)
35 {
36 randomInt = randomGen . n e x t I n t (roof) ;
37 }
38

39 i f (t r a f f i c . get (randomInt) . equals (" 2 "))
40 {
41 Host2packetsum ++;
42 }
43 e l s e
44 {
45 Host3packetsum ++;
46 }
47 t r a f f i c . remove (randomInt) ;
48 }
49 }
50 kbitavgHost2 = Host2packetsum/simsec ;
51 kbitavgHost3 = Host3packetsum/simsec ;
52 System . out . p r i n t l n (" Host2 k b i t : " + kbitavgHost2) ;
53 System . out . p r i n t l n (" Host3 k b i t : " + kbitavgHost3) ;
54 }
55 }

Listing 2: Simple Fifo simulation

52

[September 28, 2017 – High Quality of Service in SDN version 1.2]

53

[September 28, 2017 – High Quality of Service in SDN version 1.2]

.

[September 28, 2017 – High Quality of Service in SDN version 1.2]

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Problem description
	1.2 Project objective
	1.3 Project questions
	1.4 Project constraints

	2 Background
	2.1 SDN
	2.2 SDN Controllers
	2.3 OpenFlow
	2.4 QoS in networking
	2.5 Realated research in the field of QoS in SDN

	3 Methods
	3.1 Choice of QoS Method
	3.1.1 Integrated Services (IntServ)
	3.1.2 Differentiated services (DiffServ)
	3.1.3 Comparison & Selection

	3.2 Differentiated Services Code Point (DSCP)
	3.2.1 DSCP values & classes

	3.3 DSCP remarking
	3.3.1 Metering

	3.4 Proof of Concept
	3.5 Mininet
	3.6 Oracle VM VitruaBox (VBox)
	3.6.1 SDN Hub

	3.7 OF Software Switch (Ofsoftswitch)
	3.8 Choice of controller

	4 PoC Tests
	4.1 Setup
	4.2 Iperf
	4.3 Test Setup

	5 Result
	5.1 System Tests
	5.2 Iperf Results
	5.2.1 Test 1: No QoS
	5.2.2 Test 2: Priority Queues
	5.2.3 Test 3: Priority Queues with Meters

	6 Discussion
	6.1 Results
	6.1.1 Comparison to related research
	6.1.2 A society's perspective

	6.2 The field of SDN
	6.3 Meters
	6.4 Physical switch approach
	6.5 Virtual switch approach

	7 Conclusion
	7.1 Future work

	Bibliography
	A Appendix

