
http://www.diva-portal.org

This is the published version of a paper presented at The 1st Workshop on Causal Reasoning for
Embedded and safety-critical Systems Technologies, Eindhoven, The Netherlands, April 8, 2016.

Citation for the original published paper:

Caltais, G., Leue, S., Mousavi, M R. (2016)
(De-)Composing Causality in Labeled Transition Systems.
In: Gregor Gössler & Oleg Sokolsky (ed.), 1st Workshop on Causal Reasoning for Embedded
and safety-critical Systems Technologies (CREST’16) (pp. 10-24). Open Publishing Association
Electronic Proceedings in Theoretical Computer Science
http://dx.doi.org/10.4204/EPTCS.224.3

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-32121

Submitted to:
CREST 2016

c© G. Caltais & S. Leue & M.R. Mousavi
This work is licensed under the
Creative Commons Attribution License.

(De-)Composing Causality in Labeled Transition Systems

Georgiana Caltais
Department for Computer and Information Science

University of Konstanz, Germany
georgiana.caltais@uni-konstanz.de

Stefan Leue
Department for Computer and Information Science

University of Konstanz, Germany
stefan.leue@uni-konstanz.de

Mohammad Reza Mousavi
Centre for Research on Embedded Systems

Halmstad University, Sweden
m.r.mousavi@hh.se

In this paper we introduce a notion of counterfactual causality in the Halpern and Pearl sense that
is compositional with respect to the interleaving of transition systems. The formal framework for
reasoning on what caused the violation of a safety property is established in the context of labeled
transition systems and Hennessy Milner logic. The compositionality results are devised for non-
communicating systems.

1 Introduction

Determining and computing causalities is a frequently addressed issue in the philosophy of science and
engineering, for instance when causally relating system faults to system failures. A notion of causality
that is frequently used in relation to technical systems relies on counterfactual reasoning. Lewis [20]
formulates the counterfactual argument, which defines when an event is considered a cause for some
effect, in the following way: a) whenever the event presumed to be a cause occurs, the effect occurs as
well, and b) when the presumed cause does not occur, the effect will not occur either (counterfactual
argument). Counterfactual reasoning hence requires the consideration of alternative worlds: one world,
corresponding to one program or system execution in software and systems analysis, where both the
cause and the effect occur, and another world in which neither the cause nor the effect occur. Cause and
effect are assumed to be temporally ordered.

In their seminal paper [13], Halpern and Pearl argue that the simple Lewis-style counterfactual ar-
gument cannot explain causalities if the causes correspond to complex logical structures of multiple
events. Halpern and Pearl define a notion of complex logical events based on boolean equation systems
and propose a number of conditions, called actual cause (AC) conditions, under which an event can be
considered causal for an effect. The AC conditions encompass a couterfactual argument.

The Halpern and Pearl model of actual causation has been related in various forms to computing
systems. Most relevant for our work is the work on causality checking [18, 17] which interprets the
Halpern and Pearl event model and notion of actual causation in the context of the transition system and
trace model for concurrent system computations. In addition to the Halpern and Pearl model, in causality
checking the order of events as well as the non-occurrence of events can be causal. An implementation
of causality checking using explicit-state model checking [19] as well as SAT-based bounded model
checking [3] have been provided. The causality checking approach has been applied to various case
studies in the area of analyzing critical systems for safety violations. In this setting, an ordered sequence
of events is computed as being the actual cause of a safety property violation. In safety engineering the
safety property violation is usually referred to as a hazard. The computed causalities will be displayed

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 (De-)Composing Causality

as fault trees complemented by temporal logic formulae which specify the order in which causal events
occur.

The objective of this paper is to consider the notion of counterfactual causality reasoning and actual
causation in the context of labeled transition systems (LTS’s). In our setting the LTS’s represent system
models and Hennessy Milner logic (HML) [14] formulae specify the system properties for whose viola-
tion actual causes are sought. We also establish first results on computing causalities in this setting using
(de-)compositional verification.

Our notion of causality complies to the characteristics of ”actual causation” proposed in [13] and
further adapted to the setting of concurrent systems in [17]. Intuitively, an execution within an LTS is
causal whenever it leads to a state where a certain effect, or hazard, is enabled. We handle effects such as
the violation of a safety property expressed in HML. Moreover, our definition includes a counterfactual
test witnessing that a certain LTS execution L is causal for the occurrence of an effect E if and only if,
were L not to happen, E would not occur either. Additionally, our definition exploits what is referred
to as the ”non-occurrence of events” in [17], and identifies relevant system execution fragments that,
whenever performed, change the occurrence of the effect from true to false. Then, similarly to the
approaches in [13, 17], our definition indicates that a setting that does not include the relevant executions
discussed above has no influence on the effect as long as the causal events are present. Finally, we require
causal executions to be minimal.

We establish the compositionality results with respect to the interleaving of LTS’s, thus shifting the
fault localization issue to the level of smaller interleaved components. The current approach only handles
non-communicating LTS’s. As an immediate extension of our approach, we would like to extend it to
communicating LTS’s by adopting ideas from [1, 8] (please see the conclusions section for more details
on this extension).

Related work. Lewis-style counterfactual arguments have become the basis for a number of fault anal-
ysis, failure localization and software debugging techniques, such as delta debugging [26], nearest neigh-
bor queries [23], counterexample explanation in model checking [12, 11] and why-because-analysis [15].

(De-)compositional verification has been studied in various contexts, such as model-checking [2,
6, 25] and model-based conformance testing [22, 24]. Our approach is based on our earlier work on
decompositional verification of modal mu-calculus formulae [1]. Regarding compositional verification
of causality, we are only aware of the line of work by Gößler, Le Métayer, and associates such as [9, 7,
8, 10]. In the remainder, we review [9] and [8] as two closely related examples in this line of work.

In [9], the authors define three trace-theoretic notions of causality for safety properties and provide an
assume guarantee framework which allows for decomposing the identification of causes. They also pro-
vide decidability results. Their approach substantially differs from ours: firstly, we combine the different
aspects of causality (positive causality, counterfactual, non-occurrence of events, and minimality) in one
definition while in [9] a subset of these aspects is considered in three different definitions. Secondly, the
approach of [9] relies on an assume-guarantee style of specifying the properties, with given LTS models
for assume and guarantee contracts, while we rely on the alphabet of the system in decomposing the
modal property and its cause. Our approach is in its early stages of development and the approach of [9]
has been worked out in various directions. For example, [9] supports interaction models and is equipped
with complexity and decidability results.

In [8], a de-compositional approach to a detecting a trace-based notion of causality is proposed. To
start with a failed trace of the system, i.e., a counter-example of the property at hand, is consider and
subsequently it is analyzed how the alternative possible behaviors of the different components may lead

G. Caltais & S. Leue & M.R. Mousavi 3

to failed traces. In our approach, however, we do not start from a system-level counter-example: we aim
at decomposing the modal formula for the property, so that all counter-examples are generated locally
from the component specifications. Our initial results reported in this paper only concern interleaving
components for which a very neat decomposition can be obtained, but our long-term vision is that modal
decomposition will enable mechanized decomposition of the modal formula for communicating compo-
nents, following the approach of [16, 1].

A trace-based approach to identifying causality for failures of interleaved systems has been recently
introduced in [4]. In short, the authors propose a method for identifying event sequences that frequently
occur within failing system executions, thus possibly revealing causes for system failures. One of the
main differences with our approach is that in [4] system events are parameterised by thread identifiers,
program and memory locations, while we consider more abstract events ranging over alphabets denoting
(atomic) system actions. Nevertheless, the idea of using thread identifiers might be worth exploited in
the context of extending our current work to the setting of concurrent, communicating LTS’s.

Paper structure. In Section 2 we provide a brief reminder of HML, LTS’s, and introduce LTS com-
putations. In Section 3 we introduce our notion of causality and provide a series of examples motivating
and explaining our definition. In Section 4 we discuss the (de-)compositionality results for causality. In
Section 5 we conclude and provide pointers to further developments. For a more detailed version of this
paper, including complete proofs of the compositionality results, we refer to [5].

2 Preliminaries

Let A be a possibly infinite set of labels, usually referred to as alphabet. Let (−)∗ be the Kleene star
operator. We use w,w0,w1, . . . to range over words in A∗. We write ε for the empty word and wa for the
word obtained by concatenating w ∈ A∗ and a ∈ A. We call a sub-word of a word w a word w′ obtained
by deleting n letters (n ≥ 1) at some not-necessarily-adjacent positions in w, written w′ ∈ sub(w). The
empty sequence ε is a sub-word of w.

Definition 1 (Labeled Transition Systems). A labeled transition system (LTS) is a triple (S,s0,A,→),
where S is the set of states, s0 ∈ S is the initial state, A is the action alphabet and→⊆ S×A×S is the
transition relation.

We write −→→ ⊆ S×A∗×S, to denote the reachability relation, i.e., the smallest relation satisfying:

p
ε−→→p

, and p
w−→→p′ p′

a−→p′′

p
wa−→→p′′

.

The set of actions that can be triggered as a first step from s ∈ S is denoted by init(s): init(s) = {a ∈
A | ∃s′ ∈ S : s a−→ s′}.
Definition 2 (Computations). Let [−] be a list constructor. We write D = [w0, . . . ,wn] for a finite list of
words wi ∈ A∗, with 0≤ i≤ n. A notation of shape D = [w0, w1, . . .] refers to an infinite list D of words
wi ∈ A∗, for i≥ 0. We write [] to denote the empty list. Moreover, we write w : D as an alternative to a list
with w as the first element, and D the ”remaining” elements; for instance, w1 : [w2,w3] = [w1,w2,w3].
We say that lists D0, . . . ,Dn are size-compatible if they are finite lists of the same length, or if they are all
infinite lists. For instance, [] and [] are size-compatible, [w0,w1,w2] and [w′0,w

′
1,w

′
2] are size-compatible,

[w0,w1, . . .] and [w′0,w
′
1, . . .] are size-compatible, whereas [] and [w] are not size-compatible.

Consider an LTS T = (S,s0,A,→) and π ∈ (S×A× [A∗])∗×S a sequence

(s0, l0,D0), . . . (sn, ln,Dn),sn+1

4 (De-)Composing Causality

over states si ∈ S, actions li ∈ A and sets of words Di ⊆ A∗, for 0≤ i≤ n. Whenever D0, . . . ,Dn are size-
compatible, we write traces((l0,D0) . . .(ln,Dn)) or, in short, traces(π), to denote the pairwise extensions
of l0 . . . ln with words from D0, . . . ,Dn as follows:

traces((l0, []) . . .(ln, [])) = {l0 . . . ln}
traces((l0,w0 : D0) . . .(ln,wn : Dn)) = {l0w0 . . . lnwn}∪ traces((l0,D0) . . .(ln,Dn))

For instance, traces((a, [wa0,wa1,wa2]),(b, [ε,ε,ε]),(c, [ε,wc1,ε])) = {awa0bc, awa1bcwc1, awa2bc}, for
a,b,c ∈ A and wa0,wa1,wa2,wc1 ∈ A∗.

We say that π is a computation of T whenever the following hold:

• s0
l0−→ s1 . . .

ln−→ sn+1,
• D0, . . . ,Dn are size-compatible, and
• for all w ∈ traces(π) there exists s ∈ S such that s0

w−→→ s.

A computation consisting of only one state s0 is called trivial computation. We use π,µ, . . . to range over
computations.

The set of sub-computations of π = (s0, l0,D0), . . . ,(sn, l0,Dn),sn+1, denoted by sub(π) is the set of
all computations π ′ = (s0, l′0,D

′
0), . . . ,(sm, l′m,D

′
m),s

′
m+1 such that l′0 . . . l

′
m ∈ sub(l0 . . . ln). Note that all

elements of sub(π) should be computations themselves.

For an intuition, size-compatible lists D0, . . . ,Dn encode the pairwise extensions of execution traces
l0 . . . ln in T that always disable a certain effect. Given a computation (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 as
above, sequences w = l0w0 . . . lnwn ∈ traces((l0,D0) . . .(ln,Dn)) determine executions s0

w−→→ s in T , such
that the effect does not occur in s. In our framework, occurrence of effects is formalised in terms of
satisfiability of formulae in Hennessy Milner logic [14].

Definition 3 (Hennessy-Milner logic). The syntax of Hennessy-Milner logic (HML) [14] is given by the
following grammar:

φ ,ψ ::=> | 〈a〉φ | [a]φ | ¬φ | φ ∧ψ | φ ∨ψ (a ∈ A).

We define the satisfaction relation � over LTS’s and HML formulae as follows. The alphabet of a
formula φ , denoted by al phabet(φ) is the set of actions that appear in φ .

Let T = (S,s0,A,→) be an LTS. Let φ , φ ′ range over HML formulae. It holds that:
s �> for all s ∈ S
s � ¬φ whenever s does not satisfy φ ; also written as s 6� φ

s � φ ∧φ ′ if and only if s � φ and s � φ ′

s � φ ∨φ ′ if and only if s � φ or s � φ ′

s � 〈a〉φ if and only if s a−→ s′ for some s′ ∈ S′ such that s′ � φ

s � [a]φ if and only if s′ � φ for all s′ ∈ S′ such that s a−→ s′.

3 Defining Causality

We further provide a notion of causality for LTS’s. The effects that we consider are safety properties
expressed as HML formulae. Examples motivating and explaining each of the items of our definition are
given towards the end of this section.

Our notion of causality complies with that of ”actual causation” proposed in [13] and further adapted
to the setting of concurrent systems in [17]:

G. Caltais & S. Leue & M.R. Mousavi 5

• Intuitively, AC1 in Definition 4 states that there must be a setting, or an execution within the LTS
under consideration, that determines an effect, or a hazardous situation in which a safety property
is violated.

• AC2(a) identifies a setting in which the effect does not occur. This is the counter-factual part of
our definition.

• AC2(b) indicates that, as long as the causal events are present, a setting that does not include the
relevant executions discussed above has no influence on the effect.

• AC2(c) corresponds to the so-called ”non-occurrence of events” in [17], and identifies relevant
system execution fragments that, whenever performed, change the occurrence of the effect from
true to false. Intuitively, the aforementioned execution fragments are causal by their absence: the
effect is enabled only within settings in which the fragments are not executed by our LTS.

• AC3 corresponds to the minimality condition in both [13] and [17].

The approach in [17] also exploits an ordering condition (OC) that identifies whether the order in
which certain events are executed is causal with respect to a given effect, or not. Our framework does not
explicitly handle such orderings. Nevertheless, for non-interleaved systems, such orderings are implicitly
captured by sequences l0 . . . ln determined by causal computation as in Definition 4. Additionally, as also
discussed in Remark 1, the compositionality results in Section 4 can alleviate the ordering issue for
certain kinds of effects in the context of interleaved systems.

Definition 4 (Causality for LTS’s). Consider a transition system T = (S,s0,A,→); causal traces for
an HML property φ in T denoted by Causes(φ ,T) is the set of all computations π = (s0, l0,D0), . . . ,
(sn, ln,Dn),sn+1 ∈ (S×A× [A∗])∗×S such that

1. s0
l0−→ . . .sn

ln−→ sn+1 ∧ sn+1 � φ (Positive causality, AC1),

2. ∃χ ∈ A∗,s′ ∈ S : s0
χ−→→ s′∧ s′ � ¬φ (Counter-factual, AC2(a)),

3. ∀χ ′ = l0χ0 . . . lnχn ∈ {l0 . . . ln}∪ (A∗ \ traces((l0,D0) . . .(ln,Dn))), s′ ∈ S : s0
χ ′−→→ s′⇒ s′ � φ

(Causality of occurrence, AC2(b))

4. ∀χ ′ ∈ traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln}, s′ ∈ S : s0
χ ′−→→ s′⇒ s′ � ¬φ

(Causality of non-occurrence, AC2(c))

5. ∀π ′ ∈ sub(π) : π ′ does not satisfy items 1. – 4. above (Minimality, AC3)
Definition 5 (Causal projection). A causal projection of T = (S,s0,A,→) with respect to an HML
property φ , is T ′ = (S′,s0,A,→′) such that S′ = {si | 0 ≤ i ≤ n+ 1∧ (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 ∈
Causes(φ ,T)} and→′= {(si, li,si+1) | 0≤ i≤ n∧ (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 ∈ Causes(φ ,T)}.

We write T ↓ φ to denote the causal projection of T with respect to φ .

Intuitively, a causal projection is an LTS whose executions capture precisely all causal sequences
determined by computations as in Definition 4.

Next, we illustrate the different aspects of Definition 4 using the following small “canonical” exam-
ples. The first example below motivates the positive causality condition (item 1 in Definition 4).

Example 1 (Positive causality). Consider the formula φ = 〈h〉>, which states that action h (for hazard)
is enabled at the current state and LTS T1 depicted in Figure 1.(a).

The intuition behind the notion of cause suggests that action a should be considered a cause for
〈h〉>. According to Definition 4, we have that (s10,a, [h]),s11 ∈ Causes(φ ,T). The causal projection of
T1 for φ is has one transition, namely, s10

a−→ s11.

6 (De-)Composing Causality

h

a

T1

s10

s11

s12

h

a

T2

h

h

s20

s21

s22

h

a

T3

a

s30

s31 s32

s33

h

a

T4

b

hb

b

s40

s41

s44 s45 s46

s42
s43

(a) Action a causes
hazard h.

(b) The occurrence of
hazard h is factual
(trivial).

(c) The occurrence of
a is not causal for haz-
ard h.

(d) The non-
occurrence of bb
is causal for hazard h.

Figure 1: Canonical examples motivating different conditions on causality

The following example motivates the non-triviality condition (item 2 in Definition 4).

Example 2 (Counter-factual). Consider the LTS T2 depicted in Figure 1.(b) and the same formula φ =
〈h〉>. Although trace a can lead to a state where φ holds, the hazard formula holds trivially everywhere
else, and hence there is no cause to be identified; we refer to Lemma 1 for a formalisation.

The next two examples motivate the causality of occurrence and non-occurence, respectively (items
3 and 4 in Definition 4).

Example 3 (Causality of Occurrence). Consider the LTS T3 depicted in Figure 1.(c) and the same for-
mula φ = 〈h〉>. Trace a can non-deterministically lead to two states, namely s31 and s32. The formula
holds only in one of them, namely in s31. Hence, a cannot be considered a cause for the hazard. More
precisely, if a trace is causal then its execution, or “occurrence”, always leads to a state where the
hazard holds.

Example 4 (Causality of Occurrence and Non-occurrence). Consider the LTS T4 depicted in Figure 1.(d)
and the same formula φ = 〈h〉>. Trace a leads to state s42 where the hazard formula holds. Trace ab
also leads to a hazardous state s43; however, performing another b, i.e., performing the trace abb from
the initial state, removes the hazard. Hence, (s40,a, [ε]),s42 is not in the set of causes for φ , because
extending a with bb, for instance, violates φ and thereby violating item 3 in Definition 4. However,
(s40,a, [h,bb,bh]),s42 is a cause, because a leads to a hazard, all possible extensions of a with anything
but h, bb or bh, the only ones being ε and b, also keep the hazard. On the other hand, the extensions
of a with h, bb or bh remove the hazard. Hence, h, bb and bh are the ”relevant extension” that enable
removing the hazard.

The next example motivates the minimality condition, item 5 in Definition 4.

Example 5 (Minimality Condition). Consider again the LTS T4 treated in Example 4. Computation
(s40,a, [ε,ε]), (s42,b, [h,b]),s43 is not a cause because it is not minimal (violating item 5 in Definition 4).
This is because its sub-computation (s40,a, [h,bb,bh]), s42 is a cause as illustrated in Example 4.

Consider the LTS T5 depicted in Figure 2.(a) and the formula φ = 〈h〉>. For instance, the compu-
tation (s50,a, [ε,ε,ε . . .]), (s51, i, [h, ih, iih . . .]), s51 is not in Causes(φ ,T5), because performing an i does
not change the state of the system and hence, cannot contribute to the occurrence of the hazard. Com-
putation (s50,a, [h, ih, iih, . . .]), s51, however, is in Causes(φ ,T5), because it satisfies all the conditions of
the cause, including minimality.

G. Caltais & S. Leue & M.R. Mousavi 7

h

a

i

T5

s50

s51

s52

h

a

T6

a

s60

s61 s62

s64

s63

h

s65

s66

a

b

(a) Action i does not
contribute to h.

(a) Trace ab is a cause
because trace a is not a
cause.

Figure 2: Canonical examples motivating minimality condition

Consider the LTS T6 depicted in Figure 2.(b) and the formula φ = 〈h〉>. Computation (s60,a, [ε]),
(s63,b, [h]), s65 is a cause for φ , despite the fact that computation (s60,a, [h,bh]),s61 also leads to the
hazard.

This is not a violation of minimality, because (s60,a, [h,bh]),s61 does not satisfy the so-called ”Causal-
ity of occurrence” (AC2(b)) in Definition 4, as also illustrated in Example 3.

4 (De-)composing Causality

In this section we provide the main results regarding (de-)compositionality of causality. Theorem 1 states
the equivalence between reasoning on causality with respect to disjunctions φ ∨ψ of HML formulae in
the context of interleaved LTS’s, and reasoning on causality with respect to φ or ψ in the correspond-
ing interleaved components. Orthogonally, Theorem 2 captures the equivalence between reasoning on
causality with respect to conjunctions φ ∧ψ of HML formulae in the context of interleaved LTS’s, and
reasoning on causality with respect to φ and ψ in the corresponding interleaved components. Both results
are established for non-communicating LTS’s executing disjoint sets of actions.

Our formal framework exploits standard notions of interleaving (||) and non-deterministic (+) choice
between LTS’s [21] or, more explicitly, between causal projections as in Definition 5. Consider the LTS
T = (S,s0,A,→), a ∈ A and s,s′, p, p′ ∈ S. Then:

s || p a−→ s′ || p whenever s a−→ s′ s+ p a−→ s′ whenever s a−→ s′

s || p a−→ s || p′ whenever p a−→ p′ s+ p a−→ p′ whenever p a−→ p′.

Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′). We abuse the notation and write T ||T ′ in
lieu of s0 || s′0, and T +T ′ in lieu of s0 + s′0.

With this intuition in mind, we proceed to discussing our compositionality results.
Lemma 1 provides a result that shows that reasoning on (de-)composition of causality in the context

of formulae that hold in the initial state of a system is trivial.

Lemma 1 (Immediate Causality). Consider the LTS’s T = (S,s0,A,→) and the HML property φ . If
s0 � φ it holds that s0 = Causes(φ ,T) or Causes(φ) = /0.

We call properties φ as above immediate effects.

8 (De-)Composing Causality

4.1 (De-)Composing Disjunction

In what follows we show that reasoning on causality with respect to disjunctions of HML formulae φ ∨ψ

can be performed in a compositional fashion.
Intuitively, the result in Lemma 2 states that causality is preserved under disjunction of HML formu-

lae and the interleaving of non-communicating LTS’s. Or, more precisely, given two non-communicating
LTS’s T and T ′ and two HML formulae φ and ψ built over their corresponding alphabets, it holds that a
cause π ∈ Causes(φ ,T) determines a cause µ ∈ Causes(φ ∨ψ,T || T ′) within the interleaved LTS’s.

Lemma 2. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

If π = (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 ∈ Causes(φ ,T), then there exists
µ = (s0 || s′0, l0,D0), . . . ,(sn || s′0, ln,Dn),sn+1 || s′0 ∈ Causes(φ ∨ψ,T || T ′).

Proof Sketch. The statement follows by two intermediate results.
We show how to create a computation µ satisfying conditions AC1–AC2(c) in Definition 4 from

π , given the hypothesis that π satisfies conditions AC1–AC2(c) as well. AC1 is satisfied for µ as a
consequence of AC1 being satisfied for π . AC2(a) trivially holds for µ as φ and ψ are not immediate
effects. Showing AC2(b) and AC2(c) strongly relies on the shape of D0, . . . ,Dn. The lists D i are created
in three steps.

1. We begin by simply ”copying” the information in each Di into the corresponding D i.

2. We identify all causal traces χ obtained by interleaving the causal traces of π with the causal traces
determined by all computations in Causes(ψ,T ′). We make the necessary insertions into the lists
D i, so that χ’s are stored as causal traces of computations in Causes(φ ∨ψ,T || T ′).

3. We compute all the causal traces χ for φ ∨ψ that do not allow s′0 to evolve in T ′, but consist of
words in B as well. We make the necessary insertions into the lists D i, so that χ’s are stored as
causal traces of computations in Causes(φ ∨ψ,T || T ′). This step guarantees that the remaining
traces in (A∪B)∗ \ traces((l0,D0) . . .((ln,Dn))) are not ”harmful” with respect to AC2(b) for µ ,
as they never lead to s || s′ � ¬φ ∧¬ψ .

By the above construction, AC2(b) and AC2(c) hold for µ as well.
AC3 for µ is proved to hold by reductio ad absurdum. In short, we show that whenever there is

µ ′ ∈ sub(µ), such that µ ′ satisfies AC1–AC2(b), there exists π ′ ∈ sub(π), such that π ′ satisfies AC1–
AC2(b) as well. This contradicts the hypothesis π ∈ Causes(φ ,T).

Intuitively, Lemma 3 states that causality with respect to an effect φ ∨ψ in two interleaved, but
non-communicating LTS’s, is preserved by at least one of the interleaved components. Or, more pre-
cisely, given two non-communicating LTS’s T and T ′ and two HML formulae φ and ψ built over their
corresponding alphabets, it holds that a cause µ ∈ Causes(φ ∨ψ,T || T ′) within the interleaved LTS’s
determines a cause π ∈ Causes(φ ,T) for φ in T , or a cause π ′ ∈ Causes(ψ,T ′) for ψ in T ′.

Lemma 3. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

G. Caltais & S. Leue & M.R. Mousavi 9

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∨ψ,T || T ′), then there exists
π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sn+1 ∈ Causes(φ ,T) or
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
n+1 ∈ Causes(ψ,T ′).

For all k ≤ i ≤ m: (si, li,D i) corresponds to (si || s′i, li,Di) in µ , whenever li ∈ A. For all p ≤ j ≤ q:
(s′j, l

′
j,D

′
j) corresponds to (s j || s′j, l

′
j,D

′
j) in µ , whenever l′j ∈ B. Moreover, lk . . . lm = l0 . . . ln ↓ A,

l′p . . . l
′
q = l0 . . . ln ↓ B.

Proof Sketch. The statement follows by two intermediate results.
First, we show that one can build π or π ′ as above, such that π or π ′ satisfy conditions AC1–AC2(c)

in Definition 4, given the hypothesis that µ satisfies AC1–AC2(c) as well. The reasoning for proving
this intermediate result strongly relies on the shape of the lists D i and D

′
j corresponding to π and π ′,

respectively. We construct the aforementioned lists in three steps.

1. We start with empty lists D i and D
′
j.

2. Then, we ”encode” causal sequences χ ∈ traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln} satisfying AC2(c)
by definition, into traces((lk,Dk) . . .(lm,Dm)) and, respectively, traces((l′p,D

′
p) . . .(l

′
q,D

′
q)), via

the projections of χ on A and, respectively, B that satisfy AC2(c) as well.

3. Eventually, we ”prepare” π for satisfying AC2(b). We identify all sequences χ ∈A∗\traces((lk,Dk)
. . .(lm,Dm)) that always lead to s � ¬φ . For each such χ we make the necessary insertions into
the lists D i, so that χ’s are stored as causal traces of computations in Causes(φ ,T). We repeat the
”preparation” process for π ′ as well.

Then, we show that π or π ′ satisfy AC1–AC2(c) by reductio ad absurdum. Without loss of generality,
assume that π satisfies AC1–AC2(c). Showing that π has to satisfy AC3 as well follows by proof by
contradiction. More explicitly, we show that whenever there exists π̃ ∈ sub(π) satisfying AC1–AC2(c),
one can construct µ̃ ∈ sub(µ) such that µ̃ satisfies AC1–AC2(c) as well. This contradicts the hypothesis
µ ∈ Causes(φ ∨ψ,T || T ′).

Corollary 1 states that a causal computation µ with respect to an effect φ ∨ψ in interleaved, but non-
communicating LTS’s, determines a causal computation π in the interleaved component that triggered
the first step in µ .

Corollary 1. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∨ψ,T || T ′) then

• if l0 ∈ A then exists π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sn+1 ∈ Causes(φ ,T); otherwise
• if l0 ∈ B then exists π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
n+1 ∈ Causes(ψ,T ′).

For all k ≤ i ≤ m: (si, li,D i) corresponds to (si || s′i, li,Di) in µ , whenever li ∈ A. For all p ≤ j ≤ q:
(s′j, l

′
j,D

′
j) corresponds to (s j || s′j, l

′
j,D

′
j) in µ , whenever l′j ∈ B. Moreover, lk . . . lm = l0 . . . ln ↓ A,

l′p . . . l
′
q = l0 . . . ln ↓ B.

Proof. The result follows immediately by Lemma 3, Lemma 2 and the minimality condition AC3 in
Definition 4.

10 (De-)Composing Causality

Lemma 4 states that, as a consequence of the minimality condition, causal computations with re-
spect to effects φ ∨ψ in interleaved, non-communicating LTS’s capture executions of only one of the
interleaved components.
Lemma 4. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects and
µ ∈ Causes(φ ∨ψ,T || T ′), then either

µ = (sk || s′0, lk,Dk), . . . ,(sm || s′0, lm,Dm),sn+1 || s′0, or
µ = (s0 || s′p, l′p,D ′p), . . . ,(s0 || s′q, l′q,D ′q),s0 || s′n+1

such that, for all k ≤ i≤ m and p≤ j ≤ q: si ∈ S, s′j ∈ S′, li ∈ A, l′j ∈ B, Di ∈ A∗ and D ′j ∈ B∗.

Proof. Assume µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∨ψ,T || T ′). Assume,
without loss of generality, that by Lemma 3 there exists a computation:

π̃ = (sk, lk,D̃k), . . . ,(sm, lm,D̃m),sn+1 ∈ Causes(φ ,T)

such that for all k ≤ i ≤ m: (si, li,D̃i) corresponds to (si || s′i, li,D i) in µ , whenever li ∈ A. Moreover,
lk . . . lm = l0 . . . ln ↓ A. Then, by Lemma 2, it follows that there exists a computation

µ̂ = (sk || s′0, lk,D̂k), . . . ,(sm || s′0, lm,D̂m),sn+1 || s′0 ∈ Causes(φ ∨ψ,T || T ′).

Additionally, observe that µ̂ ∈ sub(µ). This violates the minimality condition AC3 for µ , unless µ = µ̂ .
This proves our initial statement.

Theorem 1 is the main result of this section. Intuitively, it states that reasoning on causality with re-
spect to an effect φ ∨ψ in the context of non-communicating, interleaved LTS’s is equivalent to reasoning
on causality for φ or ψ in the context of the corresponding interleaved components.
Theorem 1 ((De-)composing Disjunction). Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′)
such that A∩B = /0. Assume two HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ

are not immediate effects, the following holds:

T || T ′ ↓ (φ ∨ψ) ' T ↓ φ +T ′ ↓ ψ. (1)

Proof. Let (S||,s0 || s′0,A∪B,→||)= (T || T ′) ↓ (φ ∨ψ) and (S+,s0+s′0,A∪B,→+)= (T ↓ φ)+(T ′ ↓ψ),
respectively. The result follows immediately by Corollary 1, Lemma 4 and the semantics of the non-
deterministic choice operator (+), where the isomorphic structure is underlined by:

f : S||→ S+ f−1 : S+→ S||
f (s0 || s′0) = s0 + s′0

f (p || q) =

{
p if q = s′0∧ p 6= s0
q if p = s0∧q 6= s′0

f−1(s0 + s′0) = s0 || s′0
f−1(p) =

{
p || s′0 if p ∈ S∧ p 6= s0
s0 || p if p ∈ S′∧ p 6= s′0

Example 6. For an example, consider two LTS’s T and T ′ with initial states s0 and p0, respectively,
depicted as in Figure 3. Let φ = 〈h〉> and ψ = 〈h′〉> be two HML formulae. It is straightforward to
see that T ↓ φ is defined by dotted transition s0

a
� s1 in T , whereas T ′ ↓ ψ is p0

d
� p1

e
� p2. The

interleaving of T and T ′ is the LTS originating in s0 || p0 in Figure 3. At a closer look, one can see
that T || T ′ ↓ (φ ∨ψ) is the transition system defined by the dotted transitions s0 || p0

a
� s1 || p0 and

s0 || p0
d
� s0 || p1

e
� s0 || p2, which is obviously isomorphic with T ↓ φ +T ′ ↓ ψ .

G. Caltais & S. Leue & M.R. Mousavi 11

s2 s0 s1 s3 p0 p1 p2 p3

s0 || p0 s2 || p0

s1 || p0 s0 || p1 s2 || p1

s3 || p0 s1 || p1 s0 || p2 s2 || p2

s3 || p1 s1 || p2 s0 || p3 s2 || p3

s3 || p2 s1 || p3

s3 || p3

b a h d e h′

f

b

a d d

h d a e

b

d
h

e

f

a h′

b

h′

f

e

f

h h′ a

b

f

h′
h

Figure 3: (De-)composing causality.

4.2 (De-)Composing Conjunction

In what follows we show that reasoning on causality with respect to conjunctions of HML formulae
φ ∧ψ can be performed in a compositional fashion.

Lemma 5 states that causalities in two non-communicating LTS’s are reflected within their interleav-
ing as well.
Lemma 5. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds. If

π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sm+1 ∈ Causes(φ ,T) and
π ′ = (s′p, l

′
p,D

′
p), . . . ,(sq, lq,D ′q),sq+1 ∈ Causes(ψ,T ′) then

µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∧ψ,T || T ′)

for all µ such that s0 || s′0
l0−→ . . .sn || s′n

ln−→ sn+1 || s′n+1 is an execution sequence in sk
lk−→ . . .sm

lm−→ sm+1 ||

s′p
l′p−→ . . .s′q

l′q−→ s′q+1, and s0 || s′0 = sk || s′p, sn || s′n = sm || s′q, sn+1 || s′n+1 = sk+1 || s′p+1, l0 . . . ln ↓A= lk . . . lm
and l0 . . . ln ↓ B = l′p . . . l

′
q.

Proof Sketch. The statement is a consequence of two intermediate results.
First we show that whenever π and π ′ satisfy conditions AC1–AC2(c) in Definition 4, one can build µ

as above, such that µ satisfies AC1–AC2(c) as well. Showing that µ satisfies AC1 and AC2 is immediate,
by the assumption that both π and π ′ satisfy AC1–AC2(c) and the fact that φ and ψ are not immediate
effects. Proving that AC2(b) and AC2(c) hold for µ strongly relies on the lists D i in µ . The construction
of D i’s is as follows.

12 (De-)Composing Causality

1. We start with D i’s set to the empty list [].

2. Then, note that all causal traces χ corresponding to π are causal for ¬φ ∨¬ψ as well. Hence, we
consider sequences χ from the interleaving of such χ with χ ′ ∈ B∗ and make the corresponding
additions to all D i’s, such that χ is captured within traces((l0,D0) . . .(ln,Dn)) as well. Symmet-
rically, repeat the procedure for all causal traces corresponding to π ′.
Intuitively, this step works also as a ”cleaning” step preparing µ to satisfy AC2(b) w.r.t. φ ∧ψ .

At this point AC2(b) and AC2(c) hold for µ , by the construction of lists D i above.
Proving minimality of µ follows by reductio ad absurdum. The intuition is as follows. Whenever

there exists µ ′ ∈ sub(µ) such that µ ′ satisfies AC1–AC2(c), one can build π̃ ∈ sub(π) and π̃ ′ ∈ sub(π ′)
such that π̃ and π̃ ′ satisfy AC1–AC2(c). This contradicts the hypothesis π ∈ Causes(φ ,T) and π ′ ∈
Causes(ψ,T ′).

Lemma 6 states that causality with respect to an HML formula φ ∧ψ in the context of interleaved,
non-communicating LTS’s, determines causality with respect to φ and ψ in the corresponding interleaved
components.

Lemma 6. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds.

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∧ψ,T || T ′), then there exist

π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sm+1 ∈ Causes(φ ,T) and
π ′ = (s′p, l

′
p,D

′
p), . . . ,(sq, lq,D ′q),sq+1 ∈ Causes(ψ,T ′)

where sk
lk−→ . . .sm

lm−→ sm+1 || s′p
l′p−→ . . .s′q

l′q−→ s′q+1 includes the execution sequence s0 || s′0
l0−→ . . .sn || s′n

ln−→
sn+1 || s′n+1, and sk || s′p = s0 || s′0, sm || s′q = sn || s′n, sk+1 || s′p+1 = sn+1 || s′n+1, lk . . . lm = l0 . . . ln ↓ A and
l′p . . . l

′
q = l0 . . . ln ↓ B.

Proof Sketch. First, we show that one can build π or π ′ as above, such that π or π ′ satisfy conditions
AC1–AC2(c) in Definition 4, given the hypothesis that µ satisfies AC1–AC2(c) as well. The reasoning
for proving this intermediate result strongly relies on the shape of the lists Di and D ′j corresponding to π

and π ′, respectively. We construct the aforementioned lists in three steps.

1. We start with empty lists Di and D ′j.

2. Then, we ”encode” causal sequences χ ∈ traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln} satisfying AC2(c)
by definition, into traces((lk,Dk) . . .(lm,Dm)) and, respectively, traces((l′p,D

′
p) . . .(l

′
q,D

′
q)) as fol-

lows. Whenever χ always leads to states satisfying ¬φ , make the corresponding additions to Di

such that the projection of χ on A is stored within traces((lk,Dk) . . .(lm,Dm)). Symmetrically,
repeat the procedure for causal sequences χ that always lead to states satisfying ¬ψ .

3. Eventually, we ”prepare” π for satisfying AC2(b). We identify all sequences χ ∈A∗\traces((lk,Dk)
. . .(lm,Dm)) that always lead to s � ¬φ . For each such χ we make the necessary insertions into
the lists D i, so that χ is stored as a causal trace of π . We repeat the ”preparation” process for π ′

as well.

Then, we show that π or π ′ satisfy AC1–AC2(c) by reductio ad absurdum. Showing that π has to satisfy
AC3 follows by proof by contradiction as well. Intuitively, we show that whenever there exists π̃ ∈ sub(π)

G. Caltais & S. Leue & M.R. Mousavi 13

satisfying AC1–AC2(c), one can construct µ̃ ∈ sub(µ) such that µ̃ satisfies AC1–AC2(c) as well. This
contradicts the hypothesis µ ∈Causes(φ ∧ψ,T || T ′). Similar reasoning for proving that π ′ has to satisfy
AC3.

Theorem 2 is the main result of this section. Intuitively, it states that reasoning on causality with re-
spect to an effect φ ∧ψ in the context of non-communicating, interleaved LTS’s is equivalent to reasoning
on causality for φ and ψ in the context of the corresponding interleaved components.

Theorem 2 ((De-)composing Conjunction). Consider T = (S,s0,A,→) and T ′= (S′,s′0,B,→′) such that
A∩B = /0. Assume two HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not
immediate effects, the following holds:

T || T ′ ↓ (φ ∧ψ) = (T ↓ φ) || (T ′ ↓ ψ). (2)

Proof. The result is immediate by Lemma 5 and Lemma 6.

For an example, we refer again to the LTS’s in Figure 3. The causal projection T || T ′ ↓ (φ ∧ψ) is
defined by the dashed/dotted transitions s0 || p0

d
� s0 || p1

a s1 || p1
e s1 || p2, s0 || p0

d
� s0 ||

p1
e
� s0 || p2

a s1 || p2 and s0 || p0
a
� s1 || p0

d s1 || p1
e s1 || p2. This is precisely the inter-

leaving of the causal projections T ↓ φ and T ′ ↓ ψ .

Remark 1. As pointed out in Section 3, the proposed notion of causality does not check whether the
order in which certain actions are executed is causal with respect to the violation of a safety property,
or not. Nevertheless, as already mentioned, for non-interleaved systems such orderings are implicitly
captured by sequences l0 . . . ln determined by causal computations as in Definition 4. Additionally, in the
context of interleaved systems, the ordering information can be irrelevant. For formulae defined over
disjoint alphabets, based on the compositionality results in Theorem 1 and Theorem 2, causal reasoning
is ”pushed” at the level of the interleaved components, hence the order in which these components
execute the interleaving does not matter.

5 Conclusions and Future Work

In this paper we introduce a notion of causality for LTS’s and violation of safety properties expressed
in terms of HML formulae. The proposed notion of causality inherits the characteristics of ”actual
causation” proposed in [13, 17] and, in addition, is compositional with respect to the interleaving of the
considered type of non-communicating LTS’s.

A natural extension is handling causality in the context of communicating LTS’s in the style of
CCS [21], for instance. The challenge would be to establish (de-)compositionality results whenever the
interleaved systems display internal, non-observable behaviour. The current approach relies on the fact
that the HML formulae are defined over ”observable”, disjoint alphabets. However, the general modal
decomposition theorems such as those proposed in [16, 1] do provide support for arbitrary formulae and
silent actions. This provides an interesting ground to extend our approach to communicating processes.

Of equal importance is extending our framework to handle causality for liveness properties as well.
This can be achieved via HML with recursion, which is again treated in modal decomposition approaches
[1].

We would also like to investigate the benefits of casting causality within a process algebraic setting.
Observe that, for instance, causal projections can be naturally expressed as CCS process terms derived

14 (De-)Composing Causality

from CCS terms for components or their underlying LTS’s. Hence, we would like to study whether a
process algebraic handling of causality provide more insight on its properties and whether causality as
described in this paper can be axiomatized.

Last, but not least, we would like to investigate to what extent our definition of causality is related to
the actual causality in [17, 3]. As already discussed in the current paper, the two notions share similar
characteristics, including causal non-occurrence of events and the ordering condition (that is implicit in
our approach). Once such a relationship is identified, one could exploit the compositionality results to
improve fault localisation in automated tools for causality checking [17, 3].

Acknowledgements We thank the anonymous reviewers of CREST 2016 for their constructive com-
ments and references to the literature. The work of Georgiana Caltais was partially supported by an
Independent Research Start-up Grant founded by Zukunftskolleg at Konstanz University. The work
of Mohammad Reza Mousavi has been partially supported by the Swedish Research Council (Veten-
skapsrådet) award number: 621-2014-5057 (Effective Model-Based Testing of Concurrent Systems) and
the Swedish Knowledge Foundation (Stiftelsen för Kunskaps- och Kompetensutveckling) in the context
of the AUTO-CAAS HöG project (number: 20140312).

References

[1] L. Aceto, A. Birgisson, A. Ingolfsdottir & M.R. Mousavi (2012): Decompositional Reasoning about the
History of Parallel Processes. In: Proceedings of the 4th International Conference on Fundamentals of
Software Engineering (FSEN 2011), Lecture Notes in Computer Science 7141, Springer, pp. 32–47.

[2] H. R. Andersen (1995): Partial Model Checking (Extended Abstract). In: LICS, pp. 398–407. Available at
http://doi.ieeecomputersociety.org/10.1109/LICS.1995.523274.

[3] Adrian Beer, Stephan Heidinger, Uwe Kühne, Florian Leitner-Fischer & Stefan Leue (2015): Symbolic
Causality Checking Using Bounded Model Checking. In Bernd Fischer & Jaco Geldenhuys, editors: Model
Checking Software - 22nd International Symposium, SPIN 2015, Stellenbosch, South Africa, August 24-
26, 2015, Proceedings, Lecture Notes in Computer Science 9232, Springer, pp. 203–221. Available at
http://dx.doi.org/10.1007/978-3-319-23404-5_14.

[4] Mitra Tabaei Befrouei, Chao Wang & Georg Weissenbacher (2014): Abstraction and Mining of Traces to
Explain Concurrency Bugs. In Borzoo Bonakdarpour & Scott A. Smolka, editors: Runtime Verification -
5th International Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings, Lecture
Notes in Computer Science 8734, Springer, pp. 162–177. Available at http://dx.doi.org/10.1007/
978-3-319-11164-3_14.

[5] G. Caltais, S. Leue & M.R. Mousavi (2016): (De-)Composing Causality in Labeled Transition Systems. Tech-
nical Report soft-16-02. Available at http://se.uni-konstanz.de/uploads/tx_sibibtex/crest_
2016.pdf.

[6] D. Giannakopoulou, C. S. Pasareanu & H. Barringer (2005): Component Verification with Automatically
Generated Assumptions. Autom. Softw. Eng. 12(3), pp. 297–320. Available at http://dx.doi.org/10.
1007/s10515-005-2641-y.

[7] Gregor Gößler & Lacramioara Astefanoaei (2014): Blaming in component-based real-time systems.
In: 2014 International Conference on Embedded Software, EMSOFT 2014, ACM Press, pp. 7:1–7:10,
doi:10.1145/2656045.2656048.

[8] Gregor Gößler & Daniel Le Métayer (2015): A general framework for blaming in component-based systems.
Sci. Comput. Program. 113, pp. 223–235, doi:10.1016/j.scico.2015.06.010. Available at http://dx.doi.
org/10.1016/j.scico.2015.06.010.

[9] Gregor Gößler, Daniel Le Métayer & Jean-Baptiste Raclet (2010): Causality Analysis in Contract Violation.
In: Runtime Verification - First International Conference, RV 2010, Lecture Notes in Computer Science

http://doi.ieeecomputersociety.org/10.1109/LICS.1995.523274
http://dx.doi.org/10.1007/978-3-319-23404-5_14
http://dx.doi.org/10.1007/978-3-319-11164-3_14
http://dx.doi.org/10.1007/978-3-319-11164-3_14
http://se.uni-konstanz.de/uploads/tx_sibibtex/crest_2016.pdf
http://se.uni-konstanz.de/uploads/tx_sibibtex/crest_2016.pdf
http://dx.doi.org/10.1007/s10515-005-2641-y
http://dx.doi.org/10.1007/s10515-005-2641-y
http://dx.doi.org/10.1145/2656045.2656048
http://dx.doi.org/10.1016/j.scico.2015.06.010
http://dx.doi.org/10.1016/j.scico.2015.06.010
http://dx.doi.org/10.1016/j.scico.2015.06.010

G. Caltais & S. Leue & M.R. Mousavi 15

6418, Springer, pp. 270–284, doi:10.1007/978-3-642-16612-9 21. Available at http://dx.doi.org/10.
1007/978-3-642-16612-9{_}21.

[10] Gregor Gößler & Jean-Bernard Stefani (2016): Fault Ascription in Concurrent Systems. In: Trust-
worthy Global Computing - 10th International Symposium, TGC, Lecture Notes in Computer Science
9533, Springer, pp. 79–94, doi:10.1007/978-3-319-28766-9. Available at http://dx.doi.org/10.1007/
978-3-319-28766-9.

[11] A. Groce, S. Chaki, D. Kroening & O. Strichman (2006): Error explanation with distance metrics. Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 8(3).

[12] A. Groce & W. Visser (2003): What Went Wrong: Explaining Counterexamples. In: Workshop on Software
Model Checking (SPIN), Lecture Notes in Computer Science 2648, Springer, pp. 121–135.

[13] J.Y. Halpern & J. Pearl (2005): Causes and explanations: A structural-model approach. Part I: Causes. The
British Journal for the Philosophy of Science.

[14] Matthew Hennessy & Robin Milner (1980): On Observing Nondeterminism and Concurrency. In J. W.
de Bakker & Jan van Leeuwen, editors: Automata, Languages and Programming, 7th Colloquium, No-
ordweijkerhout, The Netherland, July 14-18, 1980, Proceedings, Lecture Notes in Computer Science 85,
Springer, pp. 299–309. Available at http://dx.doi.org/10.1007/3-540-10003-2_79.

[15] Peter Ladkin & Karsten Loer (1998): Analysing Aviation Accidents Using WB-Analysis – an Application
of Multimodal Reasoning. In: AAAI Spring Symposium, AAAI. Available at https://www.aaai.org/
Papers/Symposia/Spring/1998/SS-98-04/SS98-04-031.pdf.

[16] Kim Guldstrand Larsen & Liu Xinxin (1991): Compositionality through an Operational Semantics of Con-
texts. J. Log. Comput. 1(6), pp. 761–795, doi:10.1093/logcom/1.6.761. Available at http://dx.doi.org/
10.1093/logcom/1.6.761.

[17] Florian Leitner-Fischer & Stefan Leue (2013): Causality Checking for Complex System Models. In Roberto
Giacobazzi, Josh Berdine & Isabella Mastroeni, editors: Verification, Model Checking, and Abstract In-
terpretation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings,
Lecture Notes in Computer Science 7737, Springer, pp. 248–267. Available at http://dx.doi.org/10.
1007/978-3-642-35873-9_16.

[18] Florian Leitner-Fischer & Stefan Leue (2013): Probabilistic Fault Tree Synthesis using Causality Computa-
tion. International Journal of Critical Computer-Based Systems 4, pp. pp. 119–143.

[19] Florian Leitner-Fischer & Stefan Leue (2014): SpinCause: a tool for causality checking. In Neha Rungta
& Oksana Tkachuk, editors: 2014 International Symposium on Model Checking of Software, SPIN 2014,
Proceedings, San Jose, CA, USA, July 21-23, 2014, ACM, pp. 117–120. Available at http://doi.acm.
org/10.1145/2632362.2632371.

[20] D. Lewis (1973): Counterfactuals. Blackwell Publishers.
[21] Robin Milner (1980): A Calculus of Communicating Systems. Lecture Notes in Computer Science 92,

Springer. Available at http://dx.doi.org/10.1007/3-540-10235-3.
[22] N. Noroozi, M.R. Mousavi & T.A.C. Willemse (2013): Decomposability in Input Output Conformance Test-

ing. In: Proceedings of the 8th Workshop on Model-Based Testing (MBT 2013), Electronic Proceedings in
Theoretical Computer Science 111, pp. 51–66.

[23] M. Renieris & S.P. Reiss (2003): Fault localization with nearest neighbor queries. In: 18th International
Conference on Automated Software Engineering, Montreal, Canada.

[24] T. Villa, N. Yevtushenko, R.K. Brayton, A. Mishchenko, A. Petrenko & A. Sangiovanni-Vincentelli (2012):
The Unknown Component Problem, Theory and Applications. Springer. Available at http://link.

springer.com/book/10.1007/978-0-387-68759-9/page/1.
[25] G. Xie & Z. Dang (2006): Testing systems of concurrent black-boxes—an automata-theoretic and decompo-

sitional approach. In: FATES, LNCS 3997, Springer, pp. 170–186.
[26] Andreas Zeller (2009): Why Programs Fail: A Guide to Systematic Debugging. Elsevier.

http://dx.doi.org/10.1007/978-3-642-16612-9{_}21
http://dx.doi.org/10.1007/978-3-642-16612-9{_}21
http://dx.doi.org/10.1007/978-3-642-16612-9{_}21
http://dx.doi.org/10.1007/978-3-319-28766-9
http://dx.doi.org/10.1007/978-3-319-28766-9
http://dx.doi.org/10.1007/978-3-319-28766-9
http://dx.doi.org/10.1007/3-540-10003-2_79
https://www.aaai.org/Papers/Symposia/Spring/1998/SS-98-04/SS98-04-031.pdf
https://www.aaai.org/Papers/Symposia/Spring/1998/SS-98-04/SS98-04-031.pdf
http://dx.doi.org/10.1093/logcom/1.6.761
http://dx.doi.org/10.1093/logcom/1.6.761
http://dx.doi.org/10.1093/logcom/1.6.761
http://dx.doi.org/10.1007/978-3-642-35873-9_16
http://dx.doi.org/10.1007/978-3-642-35873-9_16
http://doi.acm.org/10.1145/2632362.2632371
http://doi.acm.org/10.1145/2632362.2632371
http://dx.doi.org/10.1007/3-540-10235-3
http://link.springer.com/book/10.1007/978-0-387-68759-9/page/1
http://link.springer.com/book/10.1007/978-0-387-68759-9/page/1

	Introduction
	Preliminaries
	Defining Causality
	(De-)composing Causality
	(De-)Composing Disjunction
	(De-)Composing Conjunction

	Conclusions and Future Work

